Chang Xiao, Zheng Wenyang, Wen Shaoting, Li Chang, Liu Xianghong, Zhang Jun
College of Physics, Qingdao University, Qingdao 266071, China.
J Phys Chem Lett. 2024 Aug 29;15(34):8660-8666. doi: 10.1021/acs.jpclett.4c01872. Epub 2024 Aug 19.
Transition-metal dichalcogenides (TMDs) are widely used in the gas sensing field, owing to their high surface-to-volume ratio enabled by the two-dimensional (2D) structure, adjustable band gap, and high electron transfer. However, it is challenging for TMD materials to realize superior CO sensing, due to their weak CO adsorption capacity. Herein, we predict through density functional theory (DFT) calculations that rare earth metal doping is an effective strategy to boost the CO sensing capability of TMDs. As a proof-of-concept, we investigate and find that the introduction of rare earth metal atoms (La, Ce, Pr, or Nd) can induce lattice strain and modulate the electronic properties of MoS. When negative charges are injected in rare earth metal doped MoS (R-MoS), the 5d or 4f orbital of the rare earth metal atom in R-MoS can produce a stronger orbital hybridization with 2p orbitals of C and O in CO. Therefore, the CO adsorption is significantly enhanced and the charge transfer is facilitated for negatively charged R-MoS. Moreover, negatively charged R-MoS exhibits an excellent CO selectivity. Our results indicate that the rare earth metal doping and electronic modulation in 2D materials may provide a new pathway for CO sensing and capture.
过渡金属二硫属化物(TMDs)因其二维(2D)结构所赋予的高比表面积、可调节的带隙和高电子转移率而在气体传感领域得到广泛应用。然而,由于TMD材料对一氧化碳(CO)的吸附能力较弱,实现优异的CO传感具有挑战性。在此,我们通过密度泛函理论(DFT)计算预测,稀土金属掺杂是提高TMDs对CO传感能力的有效策略。作为概念验证,我们研究发现,引入稀土金属原子(镧(La)、铈(Ce)、镨(Pr)或钕(Nd))可引起晶格应变并调节二硫化钼(MoS)的电子性质。当向稀土金属掺杂的MoS(R-MoS)中注入负电荷时,R-MoS中稀土金属原子的5d或4f轨道可与CO中C和O的2p轨道产生更强的轨道杂化。因此,对于带负电荷的R-MoS,CO吸附显著增强且电荷转移得以促进。此外,带负电荷的R-MoS表现出优异的CO选择性。我们的结果表明,二维材料中的稀土金属掺杂和电子调制可为CO传感与捕获提供一条新途径。