de Vicente Julio I
Departamento de Matemáticas, <a href="https://ror.org/03ths8210">Universidad Carlos III de Madrid</a>, E-28911, Leganés (Madrid), Spain and <a href="https://ror.org/05e9bn444">Instituto de Ciencias Matemáticas (ICMAT)</a>, E-28049 Madrid, Spain.
Phys Rev Lett. 2024 Aug 2;133(5):050202. doi: 10.1103/PhysRevLett.133.050202.
Entanglement is a resource under local operations assisted by classical communication (LOCC). Given a set of states S, if there is one state in S that can be transformed by LOCC into all other states in S, then this state is maximally entangled in S. It is a well-known result that the d-dimensional Bell state is the maximally entangled state in the set of all bipartite states of local dimension d. Since in practical applications noise renders every state mixed, it is interesting to study whether sets of mixed states of relevance enable the notion of a maximally entangled state. A natural choice is the set of all states with the same spectrum. In fact, for any given spectrum distribution on two-qubit states, previous work has shown that several entanglement measures are all maximized by one particular state in this set. This has led us to consider the possibility that this family of states could be the maximally entangled states in the set of all states with the same spectrum, which should then maximize all entanglement measures. In this work, I answer this question in the negative: There are no maximally entangled states for a fixed spectrum in general, i.e., for every possible choice of the spectrum. In order to do so, I consider the case of rank-2 states and show that for particular values of the eigenvalues there exists no state that can be transformed to all other isospectral states not only under LOCC but also under the larger class of nonentangling operations. This in particular implies that in these cases the state that maximizes a given entanglement measure among all states with the same spectrum depends on the choice of entanglement measure; i.e., it cannot be that the aforementioned family of states maximizes all entanglement measures.
纠缠是一种在经典通信辅助的局域操作(LOCC)下的资源。给定一组态(S),如果(S)中的一个态可以通过LOCC变换为(S)中的所有其他态,那么这个态在(S)中就是最大纠缠态。一个众所周知的结果是,(d)维贝尔态是局域维度为(d)的所有二分态集合中的最大纠缠态。由于在实际应用中噪声会使每个态都变为混合态,研究相关的混合态集合是否能支持最大纠缠态的概念就很有趣。一个自然的选择是具有相同谱的所有态的集合。事实上,对于两比特态上任何给定的谱分布,先前的工作表明,在这个集合中,几种纠缠度量都由一个特定的态最大化。这使我们考虑这样一种可能性,即这个态族可能是具有相同谱的所有态集合中的最大纠缠态,那么它应该能最大化所有纠缠度量。在这项工作中,我给出了否定的答案:一般来说,对于固定的谱不存在最大纠缠态,即对于谱的每一种可能选择都不存在。为了做到这一点,我考虑秩为(2)的态的情况,并表明对于特征值的特定值,不仅在LOCC下,而且在更大的非纠缠操作类下,都不存在能变换为所有其他等谱态的态。这尤其意味着,在这些情况下,在具有相同谱的所有态中最大化给定纠缠度量的态取决于纠缠度量的选择;也就是说,上述态族不可能最大化所有纠缠度量。