School of Computer Science and Technology, Shandong Jianzhu University, Shandong, China.
Shandong Hoteam Software Co., Ltd., Jinan, China.
PLoS One. 2024 Aug 19;19(8):e0308933. doi: 10.1371/journal.pone.0308933. eCollection 2024.
This paper introduces an innovative segmentation model that extends the U-Net architecture with a Squeeze and Excitation (SE) mechanism, designed to enhance the detection of moving objects in video streams. By integrating this model into the ViBe motion detection algorithm, we have significantly improved detection accuracy and reduced false positive rates. Our approach leverages adaptive techniques to increase the robustness of the segmentation model in complex scenarios, without requiring extensive manual parameter tuning. Despite the notable improvements, we recognize that further training is necessary to optimize the model for specific applications. The results indicate that our method provides a promising direction for real-time motion detection systems that require high precision and adaptability to varying conditions.
本文提出了一种创新的分割模型,该模型在 U-Net 架构中加入了挤压激励(Squeeze and Excitation,SE)机制,旨在提高视频流中运动目标的检测能力。通过将该模型集成到 ViBe 运动检测算法中,我们显著提高了检测精度,同时降低了误报率。我们的方法利用自适应技术,在无需大量手动参数调整的情况下,提高了分割模型在复杂场景下的鲁棒性。尽管取得了显著的改进,我们仍认识到需要进一步训练以优化模型,使其适用于特定应用。结果表明,我们的方法为需要高精度和适应不同条件的实时运动检测系统提供了一个有前途的方向。