EVS Broadcast Equipment, Liege Science Park, B-4102 Seraing, Belgium.
IEEE Trans Image Process. 2011 Jun;20(6):1709-24. doi: 10.1109/TIP.2010.2101613. Epub 2010 Dec 23.
This paper presents a technique for motion detection that incorporates several innovative mechanisms. For example, our proposed technique stores, for each pixel, a set of values taken in the past at the same location or in the neighborhood. It then compares this set to the current pixel value in order to determine whether that pixel belongs to the background, and adapts the model by choosing randomly which values to substitute from the background model. This approach differs from those based upon the classical belief that the oldest values should be replaced first. Finally, when the pixel is found to be part of the background, its value is propagated into the background model of a neighboring pixel. We describe our method in full details (including pseudo-code and the parameter values used) and compare it to other background subtraction techniques. Efficiency figures show that our method outperforms recent and proven state-of-the-art methods in terms of both computation speed and detection rate. We also analyze the performance of a downscaled version of our algorithm to the absolute minimum of one comparison and one byte of memory per pixel. It appears that even such a simplified version of our algorithm performs better than mainstream techniques.
本文提出了一种运动检测技术,该技术结合了几种创新机制。例如,我们提出的技术为每个像素存储在过去同一位置或附近拍摄的一组值。然后,它将该集合与当前像素值进行比较,以确定该像素是否属于背景,并通过随机选择要从背景模型中替换的哪些值来调整模型。这种方法与基于经典观点的方法不同,经典观点认为应该首先替换最旧的值。最后,当发现像素是背景的一部分时,其值会传播到相邻像素的背景模型中。我们详细描述了我们的方法(包括伪代码和使用的参数值),并将其与其他背景减除技术进行了比较。效率数据表明,我们的方法在计算速度和检测率方面均优于最新的、经过验证的最先进方法。我们还分析了我们的算法的缩小版本的性能,该版本的算法每个像素的比较次数和内存消耗都降至最低,仅为一次比较和一个字节。似乎即使是这样简化的算法也比主流技术表现更好。