Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China.
School of Life Sciences, MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, Tsinghua University, Beijing, China.
PLoS Biol. 2024 Aug 19;22(8):e3002615. doi: 10.1371/journal.pbio.3002615. eCollection 2024 Aug.
Dynamic properties are essential for microtubule (MT) physiology. Current techniques for in vivo imaging of MTs present intrinsic limitations in elucidating the isotype-specific nuances of tubulins, which contribute to their versatile functions. Harnessing the power of the AlphaFold2 pipeline, we engineered a strategy for the minimally invasive fluorescence labeling of endogenous tubulin isotypes or those harboring missense mutations. We demonstrated that a specifically designed 16-amino acid linker, coupled with sfGFP11 from the split-sfGFP system and integration into the H1-S2 loop of tubulin, facilitated tubulin labeling without compromising MT dynamics, embryonic development, or ciliogenesis in Caenorhabditis elegans. Extending this technique to human cells and murine oocytes, we visualized MTs with the minimal background fluorescence and a pathogenic tubulin isoform with fidelity. The utility of our approach across biological contexts and species set an additional paradigm for studying tubulin dynamics and functional specificity, with implications for understanding tubulin-related diseases known as tubulinopathies.
动态特性对于微管 (MT) 的生理机能至关重要。目前用于 MT 体内成像的技术在阐明微管蛋白的同型特异性细微差别方面存在固有局限性,这些差别有助于其发挥多种功能。利用 AlphaFold2 管道的功能,我们设计了一种对内源性微管蛋白同型或携带错义突变的微管蛋白进行微创荧光标记的策略。我们证明,一个专门设计的 16 个氨基酸接头,与来自分体 sfGFP 的 sfGFP11 结合,并整合到微管的 H1-S2 环中,在不影响 MT 动力学、胚胎发育或秀丽隐杆线虫纤毛发生的情况下,促进了微管蛋白的标记。将这项技术扩展到人类细胞和小鼠卵母细胞中,我们以最小的背景荧光和保真度可视化了 MT 以及致病性微管蛋白同型。我们的方法在不同的生物背景和物种中的应用为研究微管蛋白动力学和功能特异性提供了另一种范例,这对理解称为微管蛋白病的与微管蛋白相关的疾病具有重要意义。