Suppr超能文献

设计分子与二维过渡金属二硫属化物的界面:增强型多功能电子学

Engineering the Interfacing of Molecules with 2D Transition Metal Dichalcogenides: Enhanced Multifunctional Electronics.

作者信息

Han Bin, Samorì Paolo

机构信息

Université de Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000 Strasbourg, France.

出版信息

Acc Chem Res. 2024 Sep 3;57(17):2532-2545. doi: 10.1021/acs.accounts.4c00338. Epub 2024 Aug 19.

Abstract

ConspectusEngineering all interfaces between different components in electronic devices is the key to control and optimize fundamental physical processes such as charge injection at metal-semiconductor interfaces, gate modulation at the dielectric-semiconductor interface, and carrier modulation at semiconductor-environment interfaces. The use of two-dimensional (2D) crystals as semiconductors, by virtue of their atomically flat dangling bond-free structures, can facilitate the tailoring of such interfaces effectively. In this context, 2D transition metal dichalcogenides (TMDs) have garnered tremendous attention over the past two decades owing to their exclusive and outstanding physical and chemical characteristics such as their strong light-matter interactions and high charge mobility. These properties position them as promising building blocks for next-generation semiconductor materials. The combination of their large specific surface area, unique electronic structure, and properties highly sensitive to environmental changes makes 2D TMDs appealing platforms for applications in optoelectronics and sensing. While a broad arsenal of TMDs has been made available that exhibit a variety of electronic properties, the latter are unfortunately hardly tunable. To overcome this problem, the controlled functionalization of TMDs with molecules and assemblies thereof represents a most powerful strategy to finely tune their surface characteristics for electronics. Such functionalization can be used not only to encapsulate the electronic material, therefore enhancing its stability in air, but also to impart dynamic, stimuli-responsive characteristics to TMDs and to selectively recognize the presence of a given analyte in the environment, demonstrating unprecedented application potential.In this Account, we highlight the most enlightening recent progress made on the interface engineering in 2D TMD-based electronic devices via covalent and noncovalent functionalization with suitably designed molecules, underlining the remarkable synergies achieved. While electrode functionalization allows modulating charge injection and extraction, the functionalization of the dielectric substrate enables tuning of the carrier concentration in the device channel, and the functionalization of the upper surface of 2D TMDs allows screening the interaction with the environment and imparts molecular functionality to the devices, making them versatile for various applications. The tailored interfaces enable enhanced device performance and open up avenues for practical applications. This Account specifically focuses on our recent endeavor in the unusual properties conferred to 2D TMDs through the functionalization of their interfaces with stimuli-responsive molecules or molecular assemblies. This includes electrode-functionalized devices with modulable performance and charge carriers, molecular-bridged TMD network devices with overall enhanced electrical properties, sensor devices that are highly responsive to changes in the external environment, in particular, electrochemically switchable transistors that react to external electrochemical signals, optically switchable transistors that are sensitive to external light inputs, and multiresponsive transistors that simultaneously respond to multiple external stimuli including optical, electrical, redox, thermal, and magnetic inputs and their application in the development of unprecedented memories, artificial synapses, and logic inverters. By presenting the current challenges, opportunities, and prospects in this blooming research field, we will discuss the powerful integration of such strategies for next-generation electronic digital devices and logic circuitries, outlining future directions and potential breakthroughs in interface engineering.

摘要

概述

设计电子设备中不同组件之间的所有接口是控制和优化基本物理过程的关键,这些过程包括金属 - 半导体界面处的电荷注入、介电 - 半导体界面处的栅极调制以及半导体 - 环境界面处的载流子调制。使用二维(2D)晶体作为半导体,凭借其原子级平整且无悬空键的结构,能够有效地促进此类接口的定制。在这种背景下,二维过渡金属二硫属化物(TMD)在过去二十年中因其独特且出色的物理和化学特性,如强光 - 物质相互作用和高电荷迁移率,而备受关注。这些特性使其成为下一代半导体材料的有前途的构建块。二维TMD的大比表面积、独特的电子结构以及对环境变化高度敏感的特性,使其成为光电子学和传感应用中颇具吸引力的平台。虽然已经有大量具有各种电子特性的TMD可供使用,但不幸的是,后者几乎无法调节。为了克服这个问题,用分子及其组装体对TMD进行可控功能化是一种最强大的策略,可精细调节其表面特性以用于电子学。这种功能化不仅可以用于封装电子材料,从而增强其在空气中的稳定性,还可以赋予TMD动态、刺激响应特性,并选择性地识别环境中给定分析物的存在,展现出前所未有的应用潜力。

在本综述中,我们重点介绍了通过与精心设计的分子进行共价和非共价功能化,在基于二维TMD的电子设备的界面工程方面取得的最具启发性的最新进展,强调了所实现的显著协同效应。虽然电极功能化允许调节电荷注入和提取,但介电基板的功能化能够调节器件通道中的载流子浓度,二维TMD上表面的功能化则允许筛选与环境的相互作用并赋予器件分子功能,使其适用于各种应用。定制的界面能够提高器件性能并为实际应用开辟道路。本综述特别关注我们最近通过用刺激响应分子或分子组装体对二维TMD的界面进行功能化而赋予其的异常特性的研究。这包括具有可调制性能和电荷载流子的电极功能化器件、整体电学性能增强的分子桥接TMD网络器件、对外部环境变化高度响应的传感器器件,特别是对外部电化学信号作出反应的电化学可切换晶体管、对外部光输入敏感 的光学可切换晶体管以及同时对包括光学、电学、氧化还原、热和磁输入在内的多种外部刺激作出反应的多响应晶体管,以及它们在开发前所未有的存储器、人工突触和逻辑反相器方面的应用。通过介绍这个蓬勃发展的研究领域当前的挑战、机遇和前景,我们将讨论这些策略在下一代电子数字设备和逻辑电路中的强大整合,概述界面工程的未来方向和潜在突破。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验