Suppr超能文献

生物特征分子在蒸发盐卤中积累和持续存在:对行星探索的启示。

Biosignature Molecules Accumulate and Persist in Evaporitic Brines: Implications for Planetary Exploration.

机构信息

School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA.

School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.

出版信息

Astrobiology. 2024 Aug;24(8):795-812. doi: 10.1089/ast.2023.0122.

Abstract

The abundance of potentially habitable hypersaline environments in our solar system compels us to understand the impacts of high-salt matrices and brine dynamics on biosignature detection efforts. We identified and quantified organic compounds in brines from South Bay Salt Works (SBSW), where evapoconcentration of ocean water enables exploration of the impact of NaCl- and MgCl-dominated brines on the detection of potential biosignature molecules. In SBSW, organic biosignature abundance and distribution are likely influenced by evapoconcentration, osmolyte accumulation, and preservation effects. Bioluminescence assays show that adenosine triphosphate (ATP) concentrations are higher in NaCl-rich, low water activity () samples (<0.85) from SBSW. This is consistent with the accumulation and preservation of ATP at low as described in past laboratory studies. The water-soluble small organic molecule inventory was determined by using microchip capillary electrophoresis paired with high-resolution mass spectrometry (µCE-HRMS). We analyzed the relative distribution of proteinogenic amino acids with a recently developed quantitative method using CE-separation and laser-induced fluorescence (LIF) detection of amino acids in hypersaline brines. Salinity trends for dissolved free amino acids were consistent with amino acid residue abundance determined from the proteome of the microbial community predicted from metagenomic data. This highlights a tangible connection up and down the "-omics" ladder across changing geochemical conditions. The detection of water-soluble organic compounds, specifically proteinogenic amino acids at high abundance (>7 mM) in concentrated brines, demonstrates that potential organic biomarkers accumulate at hypersaline sites and suggests the possibility of long-term preservation. The detection of such molecules in high abundance when using diverse analytical tools appropriate for spacecraft suggests that life detection within hypersaline environments, such as evaporates on Mars and the surface or subsurface brines of ocean world Europa, is plausible and argues such environments should be a high priority for future exploration. Key Words: Salts-Analytical chemistry-Amino acids-Biosignatures-Capillary electrophoresis-Preservation. Astrobiology 24, 795-812.

摘要

在我们的太阳系中,潜在可居住的高盐环境丰富,这促使我们了解高盐基质和卤水动力学对生物特征检测工作的影响。我们在南湾盐厂(SBSW)的卤水中鉴定和量化了有机化合物,在那里,海水的蒸发浓缩使我们能够探索 NaCl 和 MgCl 为主的卤水对潜在生物特征分子检测的影响。在 SBSW 中,有机生物特征的丰度和分布可能受到蒸发浓缩、渗透调节剂积累和保存效应的影响。生物发光测定表明,SBSW 中 NaCl 丰富、水活度低(<0.85)的样品中三磷酸腺苷(ATP)浓度较高。这与过去实验室研究中描述的低 下 ATP 的积累和保存一致。采用微芯片毛细管电泳与高分辨率质谱联用(µCE-HRMS)确定水溶性小分子有机分子库存。我们使用最近开发的定量方法,通过 CE 分离和激光诱导荧光(LIF)检测高盐卤水中的氨基酸,分析了蛋白质氨基酸的相对分布。溶解游离氨基酸的盐度趋势与从宏基因组数据预测的微生物群落的蛋白质组中确定的氨基酸残基丰度一致。这突出了在不断变化的地球化学条件下,从“组学”层面上下连接的有形联系。在浓缩卤水中高丰度(>7mM)水溶性有机化合物,特别是蛋白质氨基酸的检测,表明潜在的有机生物标志物在高盐环境中积累,并表明长期保存的可能性。使用适合航天器的多种分析工具检测到这些分子的高丰度表明,在高盐环境中进行生命探测是可行的,例如在火星上的蒸发物以及海洋世界欧罗巴的表面或地下卤水,并且这些环境应该是未来探索的重点。关键词:盐-分析化学-氨基酸-生物特征-毛细管电泳-保存。天体生物学 24, 795-812。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验