Suppr超能文献

与火星土壤模拟物蒙脱石相关的丙氨酸光化学演化:从国际空间站上进行的实验中获得的见解

Photochemical Evolution of Alanine in Association with the Martian Soil Analog Montmorillonite: Insights Derived from Experiments Conducted on the International Space Station.

作者信息

Wipf Severin, Mabey Paul, Urso Riccardo G, Wolf Sebastian, Stok Arthur, Ricco Antonio J, Quinn Richard C, Mattioda Andrew L, Jones Nykola C, Hoffmann Søren V, Cottin Hervé, Chaput Didier, Ehrenfreund Pascale, Elsaesser Andreas

机构信息

Experimental Biophysics and Space Sciences, Department of Physics, Freie Universitaet Berlin, Berlin, Germany.

INAF-Osservatorio Astrofisico di Catania, Catania, Italy.

出版信息

Astrobiology. 2025 Feb;25(2):97-114. doi: 10.1089/ast.2024.0034. Epub 2025 Jan 27.

Abstract

The (PSS) experiment was part of the European Space Agency's mission and was conducted on the International Space Station from 2014 to 2016. The PSS experiment investigated the properties of montmorillonite clay as a protective shield against degradation of organic compounds that were exposed to elevated levels of ultraviolet (UV) radiation in space. Additionally, we examined the potential for montmorillonite to catalyze UV-induced breakdown of the amino acid alanine and its potential to trap the resulting photochemical byproducts within its interlayers. We tested pure alanine thin films, alanine thin films protected from direct UV exposure by a thin cover layer of montmorillonite, and an intimate combination of the two substances forming an organoclay. The samples were exposed to space conditions for 15.5 months and then returned to Earth for detailed analysis. Concurrent ground-control experiments subjected identical samples to simulated solar light irradiation. Fourier-transform infrared (FTIR) spectroscopy quantified molecular changes by comparing spectra obtained before and after exposure for both the space and ground-control samples. To more deeply understand the photochemical processes influencing the stability of irradiated alanine molecules, we performed an additional experiment using time-resolved FTIR spectroscopy for a second set of ground samples exposed to simulated solar light. Our collective experiments reveal that montmorillonite clay exhibits a dual, configuration-dependent effect on the stability of alanine: while a thin cover layer of the clay provides UV shielding that slows degradation, an intimate mixture of clay and amino acid hastens the photochemical decomposition of alanine by promoting certain chemical reactions. This observation is important to understand the preservation of amino acids in specific extraterrestrial environments, such as Mars: cover mineral layer depths of several millimeters are required to effectively shield organics from the harmful effects of UV radiation. We also explored the role of carbon dioxide (CO), a byproduct of alanine photolysis, as a tracer of the amino acid. CO can be trapped within clay interlayers, particularly in clays with small interlayer ions such as sodium. Our studies emphasize the multifaceted interactions between montmorillonite clay and alanine under nonterrestrial conditions; thus, they contribute valuable insights to broader astrobiological research questions.

摘要

(PSS)实验是欧洲航天局某项任务的一部分,于2014年至2016年在国际空间站上进行。PSS实验研究了蒙脱石粘土作为一种保护屏障的特性,以防止在太空中暴露于高强度紫外线(UV)辐射下的有机化合物降解。此外,我们研究了蒙脱石催化紫外线诱导的氨基酸丙氨酸分解的潜力,以及其在层间捕获由此产生的光化学副产物的潜力。我们测试了纯丙氨酸薄膜、由蒙脱石薄覆盖层保护免受直接紫外线照射的丙氨酸薄膜,以及这两种物质形成有机粘土的紧密组合。这些样品在太空条件下暴露了15.5个月,然后返回地球进行详细分析。同时进行的地面控制实验对相同的样品进行模拟太阳光照射。傅里叶变换红外(FTIR)光谱通过比较太空和地面控制样品暴露前后获得的光谱来量化分子变化。为了更深入地了解影响辐照丙氨酸分子稳定性的光化学过程,我们对另一组暴露于模拟太阳光的地面样品进行了时间分辨FTIR光谱的额外实验。我们的综合实验表明,蒙脱石粘土对丙氨酸的稳定性表现出双重的、取决于构型的影响:虽然粘土的薄覆盖层提供紫外线屏蔽,减缓降解,但粘土和氨基酸的紧密混合物通过促进某些化学反应加速丙氨酸的光化学分解。这一观察结果对于理解特定外星环境(如火星)中氨基酸的保存很重要:需要几毫米深的覆盖矿层才能有效保护有机物免受紫外线辐射的有害影响。我们还探讨了丙氨酸光解副产物二氧化碳(CO)作为氨基酸示踪剂的作用。CO可以被困在粘土层间,特别是在层间离子较小的粘土(如钠粘土)中。我们的研究强调了非地球条件下蒙脱石粘土与丙氨酸之间多方面的相互作用;因此,它们为更广泛的天体生物学研究问题提供了有价值的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验