Bourmancé Lucas, Brûlé Sébastien, Raynal Bertrand, Kish Adrienne
Unité Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), CNRS, Paris, France.
Institut Pasteur, Université Paris Cité, Plateforme de Biophysique Moléculaire, Paris, France.
Sci Rep. 2025 Aug 6;15(1):28677. doi: 10.1038/s41598-025-11211-7.
The study of biomolecular stability of proteins and lipids in extreme saline environments is critical for understanding the preservation of potential microbial biosignatures of ancient life on Earth and other planetary bodies, including Mars. In this study, we evaluate the compatibility of several analytical techniques, Nano-Differential Scanning Fluorometry (NanoDSF), Analytical Ultracentrifugation (AUC), and Differential Scanning Calorimetry (DSC) with hypersaline brine analogues of Early Earth and Early Mars conditions. Using the halophilic archaeon Halobacterium salinarum as a model, we examine the structural stability of proteins within cell envelope fragments from dead cells, focusing on their preservation potential in complex brines. The results reveal significant technical challenges in studying macromolecules in high-salinity environments, including crystallisation during DSC and NanoDSF, viscosity-related artifacts in AUC, and reduced fluorescence signals in NanoDSF due to the low tryptophan content of membrane proteins from halophilic archaea. Nevertheless, NanoDSF proved useful for analysing multi-protein systems and DSC may be applicable using new generation technology, while AUC showed limited applicability under extreme saline conditions. These findings provide crucial insights into the methodologies for studying the stability of halophilic biomolecules in brine environments and the limitations of current techniques in extreme settings.
研究极端盐碱环境中蛋白质和脂质的生物分子稳定性,对于理解地球上古代生命以及包括火星在内的其他行星体上潜在微生物生物特征的保存情况至关重要。在本研究中,我们评估了几种分析技术,即纳米差示扫描荧光法(NanoDSF)、分析型超速离心法(AUC)和差示扫描量热法(DSC)与早期地球和早期火星条件下的高盐卤水类似物的兼容性。以嗜盐古菌盐生盐杆菌为模型,我们研究了死细胞包膜片段中蛋白质的结构稳定性,重点关注它们在复杂盐水中的保存潜力。结果揭示了在高盐环境中研究大分子存在的重大技术挑战,包括DSC和NanoDSF过程中的结晶、AUC中与粘度相关的假象,以及由于嗜盐古菌膜蛋白色氨酸含量低导致NanoDSF中荧光信号减弱。尽管如此,NanoDSF被证明可用于分析多蛋白系统,DSC可能通过新一代技术适用,而AUC在极端盐碱条件下的适用性有限。这些发现为研究盐生生物分子在盐水环境中的稳定性的方法以及当前技术在极端环境中的局限性提供了关键见解。