Zhao Baoguo, Suo Guoquan, Mu Rongrong, Lin Chuanjin, Li Jiarong, Hou Xiaojiang, Ye Xiaohui, Yang Yanling, Zhang Li
Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
J Colloid Interface Sci. 2025 Jan;677(Pt B):637-646. doi: 10.1016/j.jcis.2024.08.115. Epub 2024 Aug 16.
The growing demand for clean energy has heightened interest in sodium-ion batteries (SIBs) as promising candidates for large-scale energy storage. However, the sluggish reaction kinetics and significant volumetric changes in anode materials present challenges to the electrochemical performance of SIBs. This work introduces a hierarchical structure where WS is confined between an inner hard carbon core and an outer nitrogen-doped carbon shell, forming HC@WS@NCs core-shell structures as anodes for SIBs. The inner hard carbon core and outer nitrogen-doped carbon shell anchor WS, enhancing its structural integrity. The highly conductive carbon materials accelerate electron transport during charge/discharge, while the rationally constructed interfaces between carbon and WS regulate the interfacial energy barrier and electric field distribution, improving ion transport. This synergistic interaction results in superior electrochemical performance: the HC@WS@NCs anode delivers a high capacity of 370 mAh g at 0.2 A/g after 200 cycles and retains261 mAh g at 2 A/g after 2000 cycles. In a full battery with a NaV(PO) cathode, the NaV(PO)//HC@WS@NC full-cell achieves an impressive initial capacity of 220 mAh g at 1 A/g. This work provides a strategic approach for the systematic development of WS-based anode materials for SIBs.
对清洁能源日益增长的需求,提高了人们对钠离子电池(SIBs)作为大规模储能有前景候选者的兴趣。然而,阳极材料中缓慢的反应动力学和显著的体积变化,对SIBs的电化学性能提出了挑战。这项工作引入了一种分层结构,其中WS被限制在内部硬碳核和外部氮掺杂碳壳之间,形成HC@WS@NCs核壳结构作为SIBs的阳极。内部硬碳核和外部氮掺杂碳壳固定了WS,增强了其结构完整性。高导电性碳材料在充电/放电过程中加速电子传输,而碳与WS之间合理构建的界面调节界面能垒和电场分布,改善离子传输。这种协同相互作用导致了优异的电化学性能:HC@WS@NCs阳极在0.2 A/g下经过200次循环后提供了370 mAh g的高容量,在2 A/g下经过2000次循环后保持261 mAh g。在具有NaV(PO)阴极的全电池中,NaV(PO)//HC@WS@NC全电池在1 A/g下实现了令人印象深刻的220 mAh g的初始容量。这项工作为系统开发用于SIBs的基于WS的阳极材料提供了一种策略性方法。