Suppr超能文献

基于深度学习的正畸监测跨时间多模态融合系统。

A cross-temporal multimodal fusion system based on deep learning for orthodontic monitoring.

机构信息

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.

Institute of Image Communication and Network Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200011, China.

出版信息

Comput Biol Med. 2024 Sep;180:109025. doi: 10.1016/j.compbiomed.2024.109025. Epub 2024 Aug 18.

Abstract

INTRODUCTION

In the treatment of malocclusion, continuous monitoring of the three-dimensional relationship between dental roots and the surrounding alveolar bone is essential for preventing complications from orthodontic procedures. Cone-beam computed tomography (CBCT) provides detailed root and bone data, but its high radiation dose limits its frequent use, consequently necessitating an alternative for ongoing monitoring.

OBJECTIVES

We aimed to develop a deep learning-based cross-temporal multimodal image fusion system for acquiring root and jawbone information without additional radiation, enhancing the ability of orthodontists to monitor risk.

METHODS

Utilizing CBCT and intraoral scans (IOSs) as cross-temporal modalities, we integrated deep learning with multimodal fusion technologies to develop a system that includes a CBCT segmentation model for teeth and jawbones. This model incorporates a dynamic kernel prior model, resolution restoration, and an IOS segmentation network optimized for dense point clouds. Additionally, a coarse-to-fine registration module was developed. This system facilitates the integration of IOS and CBCT images across varying spatial and temporal dimensions, enabling the comprehensive reconstruction of root and jawbone information throughout the orthodontic treatment process.

RESULTS

The experimental results demonstrate that our system not only maintains the original high resolution but also delivers outstanding segmentation performance on external testing datasets for CBCT and IOSs. CBCT achieved Dice coefficients of 94.1 % and 94.4 % for teeth and jawbones, respectively, and it achieved a Dice coefficient of 91.7 % for the IOSs. Additionally, in the context of real-world registration processes, the system achieved an average distance error (ADE) of 0.43 mm for teeth and 0.52 mm for jawbones, significantly reducing the processing time.

CONCLUSION

We developed the first deep learning-based cross-temporal multimodal fusion system, addressing the critical challenge of continuous risk monitoring in orthodontic treatments without additional radiation exposure. We hope that this study will catalyze transformative advancements in risk management strategies and treatment modalities, fundamentally reshaping the landscape of future orthodontic practice.

摘要

引言

在错颌畸形的治疗中,持续监测牙根部与周围牙槽骨的三维关系对于预防正畸治疗的并发症至关重要。锥形束 CT(CBCT)提供了详细的牙根和骨数据,但由于其辐射剂量高,限制了其频繁使用,因此需要一种替代方法进行持续监测。

目的

我们旨在开发一种基于深度学习的跨时相多模态图像融合系统,在不增加额外辐射的情况下获取牙根和颌骨信息,增强正畸医生监测风险的能力。

方法

利用 CBCT 和口内扫描(IOS)作为跨时相模态,我们将深度学习与多模态融合技术相结合,开发了一种系统,该系统包括用于牙齿和颌骨的 CBCT 分割模型。该模型结合了动态核先验模型、分辨率恢复和针对密集点云优化的 IOS 分割网络。此外,还开发了一个粗到精的配准模块。该系统便于在不同的空间和时间维度上整合 IOS 和 CBCT 图像,实现整个正畸治疗过程中牙根和颌骨信息的全面重建。

结果

实验结果表明,我们的系统不仅保持了原始的高分辨率,而且在 CBCT 和 IOS 的外部测试数据集上也实现了出色的分割性能。CBCT 对牙齿和颌骨的 Dice 系数分别达到了 94.1%和 94.4%,对 IOS 的 Dice 系数达到了 91.7%。此外,在实际的配准过程中,该系统的牙齿平均距离误差(ADE)为 0.43mm,颌骨为 0.52mm,显著缩短了处理时间。

结论

我们开发了第一个基于深度学习的跨时相多模态融合系统,解决了在不增加额外辐射暴露的情况下进行连续风险监测的关键挑战。我们希望这项研究将推动风险管理策略和治疗方式的变革性进展,从根本上重塑未来正畸实践的格局。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验