https://ror.org/056d84691 Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany.
Life Sci Alliance. 2024 Aug 19;7(11). doi: 10.26508/lsa.202402771. Print 2024 Nov.
Regeneration of insulin-producing β-cells is an alternative avenue to manage diabetes, and it is crucial to unravel this process in vivo during physiological responses to the lack of β-cells. Here, we aimed to characterize how hepatocytes can contribute to β-cell regeneration, either directly or indirectly via secreted proteins or metabolites, in a zebrafish model of β-cell loss. Using lineage tracing, we show that hepatocytes do not directly convert into β-cells even under extreme β-cell ablation conditions. A transcriptomic analysis of isolated hepatocytes after β-cell ablation displayed altered lipid- and glucose-related processes. Based on the transcriptomics, we performed a genetic screen that uncovers a potential role of the molybdenum cofactor (Moco) biosynthetic pathway in β-cell regeneration and glucose metabolism in zebrafish. Consistently, molybdenum cofactor synthesis 2 () haploinsufficiency in mice indicated dysregulated glucose metabolism and liver function. Together, our study sheds light on the liver-pancreas crosstalk and suggests that the molybdenum cofactor biosynthesis pathway should be further studied in relation to glucose metabolism and diabetes.
胰岛β细胞的再生是治疗糖尿病的一种替代方法,在生理条件下研究β细胞缺乏时体内这一过程至关重要。在此,我们旨在描述在β细胞缺失的斑马鱼模型中,肝细胞如何通过直接或间接的分泌蛋白或代谢物途径来促进β细胞再生,无论是直接的还是间接的。通过谱系追踪,我们发现即使在极端的β细胞消融条件下,肝细胞也不会直接转化为β细胞。β细胞消融后分离的肝细胞的转录组分析显示脂质和葡萄糖相关过程发生改变。基于转录组学,我们进行了遗传筛选,揭示了钼辅因子(Moco)生物合成途径在斑马鱼β细胞再生和葡萄糖代谢中的潜在作用。一致地,小鼠钼辅因子合成 2 ()单倍不足表明葡萄糖代谢和肝功能紊乱。总之,我们的研究揭示了肝-胰腺的串扰,并表明钼辅因子生物合成途径应进一步研究其与葡萄糖代谢和糖尿病的关系。