Suppr超能文献

根据贫困程度调整初级保健资金:对英格兰下层超级输出区的横断面研究。

Adjusting primary-care funding by deprivation: a cross-sectional study of Lower layer Super Output Areas in England.

作者信息

Holdroyd Ian, Appel Cameron, Massou Efthalia, Ford John

机构信息

Wolfson Institute of Population Health and Primary Care, Queen Mary University of London, London, UK

Wolfson Institute of Population Health and Primary Care, Queen Mary University of London, London, UK.

出版信息

BJGP Open. 2025 Apr 24;9(1). doi: 10.3399/BJGPO.2024.0185. Print 2025 Apr.

Abstract

BACKGROUND

Previous research has called for general practice funding to be adjusted by deprivation data. However, there is no evidence that this adjustment would better meet clinical need.

AIM

To assess (1) how accurately the capitation formula (Carr-Hill), and total general practice funding predicts clinical need and (2) whether adjusting by the Index of Multiple Deprivation (IMD) score improves accuracy.

DESIGN & SETTING: A cross-sectional analysis of 32 844 Lower layer Super Output Areas (LSOAs) in England in 2021-2022. Sensitivity analysis used data from 2015-2019.

METHOD

Weighted average Carr-Hill Index (CHI), total general practice funding, and five measures of clinical need were calculated for each LSOA. For both CHI and total funding, four sets of generalised linear models were calculated for each outcome measure: unadjusted; adjusted for age; adjusted for IMD; and adjusted for age and IMD. Adjusted assessed model accuracy.

RESULTS

In unadjusted models, CHI was a better predictor than total funding of combined morbidity index (CMI) ( = 49.81%, 29.31%, respectively), combined diagnosed and undiagnosed morbidity ( = 43.52%, 21.39%) and emergency admissions ( = 32.75%, 16.95%). Total funding was a better predictor than CHI of GP appointments per patient ( = 28.5%, 22.5%, respectively) and age and sex standardised mortality rates ( = 0.42%, 0.37%). Adjusting for age and IMD improved all 10 models ( = 62.15%, 53.15%, 48.57%, 38.47%, 40.53%, 32.84%, 29.11%, 34.58%, 25.21%, 25.23%, respectively). All age and IMD adjusted models significantly outperformed age-adjusted models (<0.001). Sensitivity analysis confirmed findings.

CONCLUSION

Adjusting capitation or total funding by IMD would increase funding efficiency, especially for long-term outcomes such as mortality. However, adjusting for IMD without age could have unwanted consequences.

摘要

背景

先前的研究呼吁根据贫困数据调整全科医疗资金。然而,没有证据表明这种调整能更好地满足临床需求。

目的

评估(1)人头计算公式(卡尔 - 希尔公式)和全科医疗总资金对临床需求的预测准确性如何,以及(2)通过多重贫困指数(IMD)得分进行调整是否能提高准确性。

设计与设置

对2021 - 2022年英格兰32844个低层超级输出区(LSOA)进行横断面分析。敏感性分析使用了2015 - 2019年的数据。

方法

计算每个LSOA的加权平均卡尔 - 希尔指数(CHI)、全科医疗总资金以及五项临床需求指标。对于CHI和总资金,针对每个结果指标计算了四组广义线性模型:未调整;按年龄调整;按IMD调整;按年龄和IMD调整。调整后的模型评估了模型准确性。

结果

在未调整的模型中,CHI在预测合并发病率指数(CMI)方面比总资金表现更好(分别为49.81%和29.31%),在预测已诊断和未诊断的合并发病率方面(分别为43.52%和21.39%)以及急诊入院方面(分别为32.75%和16.95%)也是如此。在预测每位患者的全科医生预约次数方面(分别为28.5%和22.5%)以及年龄和性别标准化死亡率方面(分别为0.42%和0.37%),总资金比CHI表现更好。按年龄和IMD调整后,所有10个模型都得到了改善(分别为62.15%、53.15%、48.57%、38.47%、40.53%、32.84%、29.11%、34.58%、25.21%、25.23%)。所有按年龄和IMD调整的模型均显著优于按年龄调整的模型(<0.001)。敏感性分析证实了研究结果。

结论

通过IMD调整人头计算或总资金将提高资金使用效率,特别是对于死亡率等长期结果。然而,仅按IMD调整而不考虑年龄可能会产生不良后果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/281c/12137997/610cf4759ebc/bjgpopen-9-0185-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验