Suppr超能文献

2015 - 16年英格兰的慢性病发病率、贫困状况与初级医疗保健支出:一项横断面空间分析

Chronic morbidity, deprivation and primary medical care spending in England in 2015-16: a cross-sectional spatial analysis.

作者信息

Kontopantelis Evangelos, Mamas Mamas A, van Marwijk Harm, Ryan Andrew M, Bower Peter, Guthrie Bruce, Doran Tim

机构信息

Division of Population Health, Health Services Research & Primary Care; Faculty of Biology, Medicine and Health, University of Manchester, Greater Manchester, UK.

NIHR School for Primary Care Research, Faculty of Biology, Medicine and Health, University of Manchester, 5th Floor Williamson Building, Greater Manchester, UK.

出版信息

BMC Med. 2018 Feb 14;16(1):19. doi: 10.1186/s12916-017-0996-0.

Abstract

BACKGROUND

Primary care provides the foundation for most modern health-care systems, and in the interests of equity, it should be resourced according to local need. We aimed to describe spatially the burden of chronic conditions and primary medical care funding in England at a low geographical level, and to measure how much variation in funding is explained by chronic condition prevalence and other patient and regional factors.

METHODS

We used multiple administrative data sets including chronic condition prevalence and management data (2014/15), funding for primary-care practices (2015-16), and geographical and area deprivation data (2015). Data were assigned to a low geographical level (average 1500 residents). We investigated the overall morbidity burden across 19 chronic conditions and its regional variation, spatial clustering and association with funding and area deprivation. A linear regression model was used to explain local variation in spending using patient demographics, morbidity, deprivation and regional characteristics.

RESULTS

Levels of morbidity varied within and between regions, with several clusters of very high morbidity identified. At the regional level, morbidity was modestly associated with practice funding, with the North East and North West appearing underfunded. The regression model explained 39% of the variability in practice funding, but even after adjusting for covariates, a large amount of variability in funding existed across regions. High morbidity and, especially, rural location were very strongly associated with higher practice funding, while associations were more modest for high deprivation and older age.

CONCLUSIONS

Primary care funding in England does not adequately reflect the contemporary morbidity burden. More equitable resource allocation could be achieved by making better use of routinely available information and big data resources. Similar methods could be deployed in other countries where comparable data are collected, to identify morbidity clusters and to target funding to areas of greater need.

摘要

背景

初级保健为大多数现代医疗体系奠定了基础,为实现公平,应根据当地需求分配资源。我们旨在以低地理层面描述英格兰慢性病负担和初级医疗保健资金情况,并衡量慢性病患病率以及其他患者和地区因素能在多大程度上解释资金差异。

方法

我们使用了多个行政数据集,包括慢性病患病率和管理数据(2014/15年)、初级保健机构资金(2015 - 16年)以及地理和地区贫困数据(2015年)。数据被分配到低地理层面(平均1500名居民)。我们调查了19种慢性病的总体发病负担及其地区差异、空间聚集情况以及与资金和地区贫困的关联。使用线性回归模型,通过患者人口统计学、发病率、贫困程度和地区特征来解释支出的局部差异。

结果

发病率在各地区内部和之间存在差异,识别出了几个发病率非常高的聚集区。在地区层面,发病率与机构资金有适度关联,东北部和西北部似乎资金不足。回归模型解释了机构资金39%的变异性,但即使在调整协变量后,各地区资金仍存在大量变异性。高发病率,尤其是农村地区与更高的机构资金密切相关,而高贫困程度和老年的关联则较为适度。

结论

英格兰的初级保健资金未能充分反映当代发病负担。通过更好地利用常规可用信息和大数据资源,可以实现更公平的资源分配。在收集了可比数据的其他国家,可以采用类似方法来识别发病聚集区,并将资金投向更有需求的地区。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31cd/5812046/6489b7059e01/12916_2017_996_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验