Suppr超能文献

甜瓜:基于宏基因组长读长的标记基因进行分类鉴定和定量。

Melon: metagenomic long-read-based taxonomic identification and quantification using marker genes.

机构信息

Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.

出版信息

Genome Biol. 2024 Aug 19;25(1):226. doi: 10.1186/s13059-024-03363-y.

Abstract

Long-read sequencing holds great potential for characterizing complex microbial communities, yet taxonomic profiling tools designed specifically for long reads remain lacking. We introduce Melon, a novel marker-based taxonomic profiler that capitalizes on the unique attributes of long reads. Melon employs a two-stage classification scheme to reduce computational time and is equipped with an expectation-maximization-based post-correction module to handle ambiguous reads. Melon achieves superior performance compared to existing tools in both mock and simulated samples. Using wastewater metagenomic samples, we demonstrate the applicability of Melon by showing it provides reliable estimates of overall genome copies, and species-level taxonomic profiles.

摘要

长读测序在描述复杂微生物群落方面具有巨大的潜力,但专门为长读测序设计的分类工具仍然缺乏。我们介绍了 Melon,这是一种新颖的基于标记的分类工具,利用了长读测序的独特属性。Melon 采用了两阶段分类方案,以减少计算时间,并配备了基于期望最大化的后校正模块,以处理模糊读取。与现有工具相比,Melon 在模拟和模拟样本中都表现出了优越的性能。我们使用废水宏基因组样本,通过显示它提供了可靠的总基因组拷贝和种级分类分析的估计,证明了 Melon 的适用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验