Escuela de Ingeniería Química, Universidad Industrial de Santander, Bucaramanga, Colombia.
Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA.
Microb Biotechnol. 2024 Aug;17(8):e70000. doi: 10.1111/1751-7915.70000.
Methane capture via oxidation is considered one of the 'Holy Grails' of catalysis (Tucci and Rosenzweig, 2024). Methane is also a primary greenhouse gas that has to be reduced by 1.2 billion metric tonnes in 10 years to decrease global warming by only 0.23°C (He and Lidstrom, 2024); hence, new technologies are needed to reduce atmospheric methane levels. In Nature, methane is captured aerobically by methanotrophs and anaerobically by anaerobic methanotrophic archaea; however, the anaerobic process dominates. Here, we describe the history and potential of using the two remarkable enzymes that have been cloned with activity for capturing methane: aerobic capture via soluble methane monooxygenase and anaerobic capture via methyl-coenzyme M reductase. We suggest these two enzymes may play a prominent, sustainable role in addressing our current global warming crisis.
通过氧化捕获甲烷被认为是催化领域的“圣杯”之一(Tucci 和 Rosenzweig,2024 年)。甲烷也是一种主要的温室气体,要想将全球变暖幅度降低仅 0.23°C,就必须在 10 年内减少 12 亿吨,因此需要新技术来降低大气甲烷水平。在自然界中,甲烷被甲烷营养菌好氧捕获,被产甲烷古菌厌氧捕获;然而,厌氧过程占主导地位。在这里,我们描述了使用已克隆的具有甲烷捕获活性的两种非凡酶的历史和潜力:通过可溶性甲烷单加氧酶进行好氧捕获和通过甲基辅酶 M 还原酶进行厌氧捕获。我们认为这两种酶可能在应对我们当前的全球变暖危机中发挥突出的、可持续的作用。