Suppr超能文献

三维计算模型研究爆炸波经外耳向耳蜗毛细胞传播:初步研究。

3D Computational Modeling of Blast Wave Transmission in Human Ear From External Ear to Cochlear Hair Cells: A Preliminary Study.

机构信息

School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA.

出版信息

Mil Med. 2024 Aug 19;189(Suppl 3):291-297. doi: 10.1093/milmed/usae096.

Abstract

INTRODUCTION

Auditory disabilities like tinnitus and hearing loss caused by exposure to blast overpressures are prevalent among military service members and veterans. The high-pressure fluctuations of blast waves induce hearing loss by injuring the tympanic membrane, ossicular chain, or sensory hair cells in the cochlea. The basilar membrane (BM) and organ of Corti (OC) behavior inside the cochlea during blast remain understudied. A computational finite element (FE) model of the full human ear was used by Bradshaw et al. (2023) to predict the motion of middle and inner ear tissues during blast exposure using a 3-chambered cochlea with Reissner's membrane and the BM. The inclusion of the OC in a blast transmission model would improve the model's anatomy and provide valuable insight into the inner ear response to blast exposure.

MATERIALS AND METHODS

This study developed a microscale FE model of the OC, including the OC sensory hair cells, membranes, and structural cells, connected to a macroscale model of the ear to form a comprehensive multiscale model of the human peripheral auditory system. There are 5 rows of hair cells in the model, each row containing 3 outer hair cells (OHCs) and the corresponding Deiters' cells and stereociliary hair bundles. BM displacement 16.75 mm from the base induced by a 31 kPa blast overpressure waveform was derived from the macroscale human ear model reported by Bradshaw et al. (2023) and applied as input to the center of the BM in the OC. The simulation was run for 2 ms as a structural analysis in ANSYS Mechanical.

RESULTS

The FE model results reported the displacement and principal strain of the OHCs, reticular lamina, and stereociliary hair bundles during blast transmission. The movement of the BM caused the rest of the OC to deform significantly. The reticular lamina displacement and strain amplitudes were highest where it connected to the OHCs, indicating that injury to this part of the OC may be likely due to blast exposure.

CONCLUSIONS

This microscale model is the first FE model of the OC to be connected to a macroscale model of the ear, forming a full multiscale ear model, and used to predict the OC's behavior under blast. Future work with this model will incorporate cochlear endolymphatic fluid, increase the number of OHC rows to 19 in total, and use the results of the model to reliably predict the sensorineural hearing loss resulting from blast exposure.

摘要

简介

在军事人员和退伍军人中,暴露于冲击波超压引起的耳鸣和听力损失等听觉障碍很常见。冲击波的高压波动通过损伤鼓膜、听小骨链或耳蜗中的感觉毛细胞导致听力损失。耳蜗内的基底膜(BM)和柯蒂氏器(OC)的行为在爆震研究中仍未得到充分研究。Bradshaw 等人(2023 年)使用全人耳的计算有限元(FE)模型,通过具有 Reissner 膜和 BM 的三腔耳蜗,使用 3 个 chamber 耳蜗预测爆震暴露过程中中耳和内耳组织的运动。在爆震传递模型中包含 OC 将改善模型的解剖结构,并为爆震暴露对内耳的反应提供有价值的见解。

材料和方法

本研究开发了 OC 的微尺度 FE 模型,包括 OC 感觉毛细胞、膜和结构细胞,与耳朵的宏观模型相连,形成人类外周听觉系统的综合多尺度模型。模型中有 5 排毛细胞,每排有 3 个外毛细胞(OHC)和相应的 Deiters 细胞和纤毛束。Bradshaw 等人(2023 年)报告的宏观人耳模型中,由 31 kPa 冲击波超压波形引起的距基底 16.75mm 的 BM 位移被用作 OC 中 BM 中心的输入。在 ANSYS Mechanical 中作为结构分析运行 2ms。

结果

FE 模型结果报告了爆震传递过程中 OHC、网状层和纤毛束的位移和主应变。BM 的运动导致 OC 的其余部分明显变形。网状层的位移和应变幅度在与 OHC 连接的地方最高,这表明 OC 的这部分可能因爆震暴露而受伤。

结论

该微尺度模型是第一个与耳朵的宏观模型相连的 OC 的 FE 模型,形成了完整的多尺度耳朵模型,并用于预测 OC 在爆震下的行为。未来使用该模型的工作将包括耳蜗内淋巴液,将 OHC 排数增加到总共 19 排,并使用模型的结果可靠地预测爆震暴露引起的感觉神经性听力损失。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验