Suppr超能文献

人耳的三维有限元模型,带有三腔螺旋耳蜗,用于从耳道向耳蜗传播爆炸波。

3D Finite Element Model of Human Ear with 3-Chamber Spiral Cochlea for Blast Wave Transmission from the Ear Canal to Cochlea.

机构信息

School of Biomedical Engineering, University of Oklahoma, 173 Felgar Street, Room 101, Norman, OK, 73019, USA.

School of Aerospace and Mechanical Engineering, University of Oklahoma, 865 Asp Avenue, Room 200, Norman, OK, 73019, USA.

出版信息

Ann Biomed Eng. 2023 May;51(5):1106-1118. doi: 10.1007/s10439-023-03200-6. Epub 2023 Apr 10.

Abstract

Blast-induced auditory trauma is a common injury in military service members and veterans that leads to hearing loss. While the inner ear response to blast exposure is difficult to characterize experimentally, computational models have advanced to predict blast wave transmission from the ear canal to the cochlea; however, published models have either straight or spiral cochlea with fluid-filled two chambers. In this paper, we report the recently developed 3D finite element (FE) model of the human ear mimicking the anatomical structure of the 3-chambered cochlea. The model consists of the ear canal, middle ear, and two and a half turns of the cochlea with three chambers separated by the Reissner's membrane (RM) and the basilar membrane (BM). The blast overpressure measured from human temporal bone experiments was applied at the ear canal entrance and the Fluent/Mechanical coupled fluid-structure interaction analysis was conducted in ANSYS software. The FE model-derived results include the pressure in the canal near the tympanic membrane (TM) and the intracochlear pressure at scala vestibuli, the TM displacement, and the stapes footplate (SFP) displacement, which were compared with experimentally measured data in human temporal bones. The validated model was used to predict the biomechanical response of the ear to blast overpressure: distributions of the maximum strain and stress within the TM, the BM displacement variation from the base to apex, and the energy flux or total energy entering the cochlea. The comparison of intracochlear pressure and BM displacement with those from the FE model of 2-chambered cochlea indicated that the 3-chamber cochlea model with the RM and scala media chamber improved our understanding of cochlea mechanics. This most comprehensive FE model of the human ear has shown its capability to predict the middle ear and cochlea responses to blast overpressure which will advance our understanding of auditory blast injury.

摘要

爆炸引起的听觉创伤是军人和退伍军人常见的损伤,会导致听力损失。虽然内耳对爆炸暴露的反应很难在实验中进行描述,但计算模型已经发展到可以预测从耳道到耳蜗的爆炸波传播;然而,已发表的模型要么是具有充满流体的两个腔室的直的或螺旋的耳蜗。在本文中,我们报告了最近开发的模拟三腔耳蜗解剖结构的人类耳朵的 3D 有限元 (FE) 模型。该模型由耳道、中耳和耳蜗的两个半转组成,三个腔室由 Reissner 膜 (RM) 和基底膜 (BM) 分隔。从人体颞骨实验中测量的爆炸超压施加在耳道入口处,在 ANSYS 软件中进行了 Fluent/Mechanical 耦合流固耦合分析。FE 模型得出的结果包括鼓膜 (TM) 附近耳道中的压力和前庭阶内的内耳蜗压力、TM 位移和镫骨足板 (SFP) 位移,这些结果与人体颞骨的实验测量数据进行了比较。经过验证的模型用于预测耳朵对爆炸超压的生物力学响应:TM 内的最大应变和应力分布、从基底到顶点的 BM 位移变化,以及进入耳蜗的能量通量或总能量。与 2 腔耳蜗的 FE 模型的内耳蜗压力和 BM 位移的比较表明,具有 RM 和 scala media 腔的 3 腔耳蜗模型提高了我们对耳蜗力学的理解。这个最全面的人类耳朵 FE 模型已经显示出预测中耳和耳蜗对爆炸超压响应的能力,这将有助于我们理解听觉爆炸损伤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验