Dumonteil Eric
<a href="https://ror.org/05k705z76">Institut de Recherche sur les Lois Fondamentales de l'Univers CEA</a>, <a href="https://ror.org/03xjwb503">Université Paris-Saclay</a>, 91191 Gif-sur-Yvette, France.
Phys Rev E. 2024 Jul;110(1-1):014119. doi: 10.1103/PhysRevE.110.014119.
Nuclear reactor cores achieve sustained fission chain reactions through the so-called "critical state"-a subtle equilibrium between their material properties and their geometries. Observed at macroscopic scales during operations, the resulting stationary neutron field is tainted by a noise term that hinders various fluctuations occurring at smaller scales. These fluctuations are either of a stochastic nature (whenever the core is operated at low power) or related to various perturbations and vibrations within the core, even operated in its power regime. For reasons that are only partially understood using linear noise theory, incidental events have been reported, characterized by an increase of the power noise. Such events of power noise growth, sometimes up to seemingly unbounded levels, have already led in the past to voluntary scramming of reactors. In this paper, we will use a statistical field theory of critical processes to model the effects of neutron power noise. We will show that the evolution of the neutron field in a reactor is intimately connected to the dynamic of surface growths given by the Kardar-Parisi-Zhang equation. Recent numerical results emerging from renormalization-group approaches will be used to calculate a threshold in the amplitude of the reactor noise above which the core enters a new criticality state, and to estimate the critical exponents characterizing this phase transition to rough neutron fields. The theoretical model of nonlinear noise built in this paper from ab initio statistical mechanics principles will be correlated and compared to data of misunderstood reactor noise levels and reactor instabilities and will be shown to provide both qualitative and quantitative insights into this long-standing issue of reactor physics.
核反应堆堆芯通过所谓的“临界状态”实现持续的裂变链式反应,“临界状态”是堆芯材料特性与几何形状之间的一种微妙平衡。在运行过程中从宏观尺度观察到,由此产生的稳态中子场受到一个噪声项的影响,该噪声项阻碍了在较小尺度上发生的各种涨落。这些涨落要么具有随机性质(只要堆芯在低功率下运行),要么与堆芯内部的各种扰动和振动有关,即使堆芯在其功率范围内运行时也是如此。由于使用线性噪声理论只能部分理解其中的原因,已经有关于偶然事件的报道,其特征是功率噪声增加。这种功率噪声增长的事件,有时会达到看似无界的水平,过去已经导致反应堆自动停堆。在本文中,我们将使用临界过程的统计场论来模拟中子功率噪声的影响。我们将表明,反应堆中中子场的演化与由 Kardar-Parisi-Zhang 方程给出的表面生长动力学密切相关。将使用重整化群方法得出的最新数值结果来计算反应堆噪声幅度的一个阈值,超过该阈值堆芯进入一种新的临界状态,并估计表征向粗糙中子场这种相变的临界指数。本文从第一性原理统计力学原理构建的非线性噪声理论模型将与误解的反应堆噪声水平和反应堆不稳定性数据进行关联和比较,并将表明该模型能够为反应堆物理这一长期存在的问题提供定性和定量的见解。