Rosembach Tiago Venzel, Dias Ana Luiza Novaes, Dickman Ronald
Departamento de Física, ICEx, <a href="https://ror.org/0176yjw32">Universidade Federal de Minas Gerais</a>, C.P. 702, 30123-970 Belo Horizonte, Minas Gerais, Brazil.
Departamento de Formação Geral de Leopoldina, <a href="https://ror.org/04ch49185">Centro Federal de Ensino Tecnológico de Minas Gerais</a>, Rua José Peres 558, Cento, Leopoldina, Minas Gerais 36700-001, Brazil.
Phys Rev E. 2024 Jul;110(1-1):014109. doi: 10.1103/PhysRevE.110.014109.
We study a discrete-space model of active matter with excluded volume. Particles are restricted to the sites of a triangular lattice and can assume one of three orientations. Varying the density and noise intensity, Monte Carlo simulations reveal a variety of spatial patterns. Ordered states occur in the form of condensed structures, which (away from the full occupancy limit) coexist with a low-density vapor. The condensed structures feature low particle mobility, particularly those that wrap the system via the periodic boundaries. As the noise intensity is increased, dense structures give way to a disordered phase. We characterize the parameter values associated with the condensed phases and perform a detailed study of the order-disorder transition at (i) full occupation and (ii) a density of 0.1. In the former case, the model possesses the same symmetry as the three-state Potts model and exhibits a continuous phase transition, as expected, with critical exponents consistent with those of the associated Potts model. In the low-density case, the transition is clearly discontinuous, with a strong dependence of the final state upon the initial configuration, hysteresis, and nonmonotonic dependence of the Binder cumulant upon noise intensity.
我们研究了一种具有排除体积的活性物质离散空间模型。粒子被限制在三角晶格的格点上,并且可以取三种取向之一。通过改变密度和噪声强度,蒙特卡罗模拟揭示了各种空间模式。有序态以凝聚结构的形式出现,在远离完全占据极限的情况下,它与低密度气相共存。凝聚结构的粒子迁移率较低,特别是那些通过周期性边界环绕系统的结构。随着噪声强度的增加,密集结构让位于无序相。我们表征了与凝聚相相关的参数值,并对(i)完全占据和(ii)密度为0.1时的有序 - 无序转变进行了详细研究。在前一种情况下,该模型具有与三态Potts模型相同的对称性,并如预期的那样表现出连续相变,其临界指数与相关Potts模型的临界指数一致。在低密度情况下,转变明显是不连续的,最终状态强烈依赖于初始构型,存在滞后现象,并且Binder累积量对噪声强度具有非单调依赖性。