Whitelam Stephen
Molecular Foundry, <a href="https://ror.org/02jbv0t02">Lawrence Berkeley National Laboratory</a>, 1 Cyclotron Road, Berkeley, California 94720, USA.
Phys Rev E. 2024 Jul;110(1-1):014142. doi: 10.1103/PhysRevE.110.014142.
The Jarzynski equality allows the calculation of free-energy differences using values of work measured from nonequilibrium trajectories. The number of trajectories required to accurately estimate free-energy differences in this way grows sharply with the size of work fluctuations, motivating the search for protocols that perform desired transformations with minimum work. However, protocols of this nature can involve varying temperature, to which the Jarzynski equality does not apply. We derive a variant of the Jarzynski equality that applies to varying-temperature protocols, and show that it can have better convergence properties than the standard version of the equality. We derive this modified equality and the associated fluctuation relation within the framework of Markovian stochastic dynamics, complementing related derivations done within the framework of Hamiltonian dynamics.
雅津斯基等式允许使用从非平衡轨迹测量得到的功值来计算自由能差。以这种方式准确估计自由能差所需的轨迹数量会随着功涨落的大小急剧增加,这促使人们寻找以最小功执行所需变换的协议。然而,这种性质的协议可能涉及温度变化,而雅津斯基等式并不适用于此。我们推导出了一个适用于变温协议的雅津斯基等式变体,并表明它可能具有比该等式的标准版本更好的收敛性质。我们在马尔可夫随机动力学框架内推导出这个修正后的等式及相关涨落关系,对在哈密顿动力学框架内完成的相关推导起到补充作用。