Suppr超能文献

一维沃尔夫-维兰模型中的双分形性。

Bifractality in the one-dimensional Wolf-Villain model.

作者信息

Luis Edwin E Mozo, Ferreira Silvio C, de Assis Thiago A

机构信息

Instituto de Física, <a href="https://ror.org/02rjhbb08">Universidade Federal Fluminense</a>, Avenida Litorânea s/n, 24210-340, Niterói, RJ, Brazil.

Departamento de Física, <a href="https://ror.org/0409dgb37">Universidade Federal de Viçosa</a>, Minas Gerais, 36570-900, Viçosa, Brazil.

出版信息

Phys Rev E. 2024 Jul;110(1):L012801. doi: 10.1103/PhysRevE.110.L012801.

Abstract

We introduce a multifractal optimal detrended fluctuation analysis to study the scaling properties of the one-dimensional Wolf-Villain (WV) model for surface growth. This model produces coarsened surface morphologies for long timescales (up to 10^{9} monolayers) and its universality class remains an open problem. Our results for the multifractal exponent τ(q) reveal an effective local roughness exponent consistent with a transient given by the molecular beam epitaxy (MBE) growth regime and Edwards-Wilkinson (EW) universality class for negative and positive q values, respectively. Therefore, although the results corroborate that long-wavelength fluctuations belong to the EW class in the hydrodynamic limit, as conjectured in the recent literature, a bifractal signature of the WV model with an MBE regime at short wavelengths was observed.

摘要

我们引入一种多重分形最优去趋势波动分析方法,以研究用于表面生长的一维沃尔夫 - 维兰(WV)模型的标度性质。该模型在长时间尺度(长达(10^{9})个单层)下会产生粗糙化的表面形态,其普适类仍然是一个未解决的问题。我们关于多重分形指数(\tau(q))的结果表明,对于负(q)值和正(q)值,有效局部粗糙度指数分别与分子束外延(MBE)生长 regime 和爱德华兹 - 威尔金森(EW)普适类给出的瞬态一致。因此,尽管结果证实了在流体动力学极限下长波长波动属于 EW 类,正如最近文献中所推测的那样,但观察到 WV 模型在短波长处具有 MBE regime 的双分形特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验