Suppr超能文献

贝叶斯脉冲融合:通过早期预测的贝叶斯融合加速脉冲神经网络推理

BayesianSpikeFusion: accelerating spiking neural network inference via Bayesian fusion of early prediction.

作者信息

Habara Takehiro, Sato Takashi, Awano Hiromitsu

机构信息

Department of Communications and Computer Engineering, Graduate School of Informatics, Kyoto University, Kyoto, Japan.

出版信息

Front Neurosci. 2024 Aug 5;18:1420119. doi: 10.3389/fnins.2024.1420119. eCollection 2024.

Abstract

Spiking neural networks (SNNs) have garnered significant attention due to their notable energy efficiency. However, conventional SNNs rely on spike firing frequency to encode information, necessitating a fixed sampling time and leaving room for further optimization. This study presents a novel approach to reduce sampling time and conserve energy by extracting early prediction results from the intermediate layer of the network and integrating them with the final layer's predictions in a Bayesian fashion. Experimental evaluations conducted on image classification tasks using MNIST, CIFAR-10, and CIFAR-100 datasets demonstrate the efficacy of our proposed method when applied to VGGNets and ResNets models. Results indicate a substantial energy reduction of 38.8% in VGGNets and 48.0% in ResNets, illustrating the potential for achieving significant efficiency gains in spiking neural networks. These findings contribute to the ongoing research in enhancing the performance of SNNs, facilitating their deployment in resource-constrained environments. Our code is available on GitHub: https://github.com/hanebarla/BayesianSpikeFusion.

摘要

脉冲神经网络(SNNs)因其显著的能源效率而备受关注。然而,传统的脉冲神经网络依靠脉冲发放频率来编码信息,这需要固定的采样时间,仍有进一步优化的空间。本研究提出了一种新方法,通过从网络中间层提取早期预测结果,并以贝叶斯方式将其与最后一层的预测结果相结合,以减少采样时间并节约能源。使用MNIST、CIFAR-10和CIFAR-100数据集对图像分类任务进行的实验评估表明,我们提出的方法应用于VGGNets和ResNets模型时是有效的。结果表明,VGGNets的能耗大幅降低了38.8%,ResNets降低了48.0%,这表明在脉冲神经网络中实现显著的效率提升具有潜力。这些发现有助于正在进行的提高脉冲神经网络性能的研究,促进其在资源受限环境中的部署。我们的代码可在GitHub上获取:https://github.com/hanebarla/BayesianSpikeFusion

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9ec/11330889/e30dc829513d/fnins-18-1420119-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验