Suppr超能文献

生物启发式尖峰神经网络学习的综述。

A review of learning in biologically plausible spiking neural networks.

机构信息

School of Computer Science and Informatics, Faculty of Computing, Engineering and Media, De Montfort University, Leicester, UK.

Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, UK.

出版信息

Neural Netw. 2020 Feb;122:253-272. doi: 10.1016/j.neunet.2019.09.036. Epub 2019 Oct 11.

Abstract

Artificial neural networks have been used as a powerful processing tool in various areas such as pattern recognition, control, robotics, and bioinformatics. Their wide applicability has encouraged researchers to improve artificial neural networks by investigating the biological brain. Neurological research has significantly progressed in recent years and continues to reveal new characteristics of biological neurons. New technologies can now capture temporal changes in the internal activity of the brain in more detail and help clarify the relationship between brain activity and the perception of a given stimulus. This new knowledge has led to a new type of artificial neural network, the Spiking Neural Network (SNN), that draws more faithfully on biological properties to provide higher processing abilities. A review of recent developments in learning of spiking neurons is presented in this paper. First the biological background of SNN learning algorithms is reviewed. The important elements of a learning algorithm such as the neuron model, synaptic plasticity, information encoding and SNN topologies are then presented. Then, a critical review of the state-of-the-art learning algorithms for SNNs using single and multiple spikes is presented. Additionally, deep spiking neural networks are reviewed, and challenges and opportunities in the SNN field are discussed.

摘要

人工神经网络已被广泛应用于模式识别、控制、机器人和生物信息学等各个领域,成为一种强大的处理工具。其广泛的适用性促使研究人员通过研究生物大脑来改进人工神经网络。近年来,神经科学研究取得了重大进展,不断揭示出生物神经元的新特性。新技术现在可以更详细地捕捉大脑内部活动的时间变化,并有助于阐明大脑活动与特定刺激感知之间的关系。这一新知识催生了一种新型人工神经网络,即尖峰神经网络(Spiking Neural Network,SNN),它更忠实于生物特性,从而提供更高的处理能力。本文对尖峰神经元学习的最新进展进行了综述。首先回顾了 SNN 学习算法的生物学背景。然后介绍了学习算法的重要组成部分,如神经元模型、突触可塑性、信息编码和 SNN 拓扑结构。接着,对使用单尖峰和多尖峰的 SNN 最新学习算法进行了批判性的回顾。此外,还对深度尖峰神经网络进行了综述,并讨论了 SNN 领域的挑战和机遇。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验