R Venkatesh, Hossain Ismail, Mohanavel V, Soudagar Manzoore Elahi M, Alharbi Sulaiman Ali, Al Obaid Sami
Department of Mechanical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105, Tamilnadu, India.
Department of Nuclear and Renewable Energy, Ural Federal University, Yekaterinburg, 620002, Russia.
Heliyon. 2024 Jul 26;10(15):e34931. doi: 10.1016/j.heliyon.2024.e34931. eCollection 2024 Aug 15.
The magnesium alloy composite is a vital material for automotive applications due to its features like high stiffness, superior damping resistance, high strength, and lightweight. Here, the motto of research is to establish the AZ91 alloy nanocomposite with the exposures of 0, 1, 3, and 5 volume percentages (vol%) of nano zirconium dioxide (ZrO) particles (50nm) through fluid stir metallurgy route associated with 1x10 Pa vacuum die cast process. Exposures on structural morphology, hardness, and impact toughness of composite are analyzed and identified as the nano AZ91 alloy composite enclosed with 5vol% is homogenous particle dispersion, enhanced hardness (97.6HV), and optimum toughness of 21.2J/mm. However, composite faces machining difficulties due to the hard abrasive particles with higher hardness, resulting in tool wear. This experiment predicts the optimum mill parameters during the end mill operation of magnesium alloy nanocomposite (AZ91/5vol%) by using a tungsten carbide coated end mill cutter to attain the maximum metal removal rate with low surface roughness and tool wear analyzed via the general linear model (GLM) ANOVA approach. The input conditions for end milling operation vary, like feed rate (0.1 -0.4mm/rev), depth of cut (0.05 -0.2mm), and spindle speed (250-1000rpm). During the ANOVA GLM approach, the L16 design experiment is fixed for further interaction analysis. The results predicted by the depth to cut and feed rate were dominant and played a major role in deciding the tool wear, surface roughness, and MRR.
镁合金复合材料因其具有高刚度、卓越的抗阻尼性、高强度和轻质等特性,成为汽车应用中的关键材料。在此,研究的主旨是通过与1x10 Pa真空压铸工艺相关的流体搅拌冶金路线,制备纳米二氧化锆(ZrO)颗粒(50nm)含量分别为0、1、3和5体积百分比(vol%)的AZ91合金纳米复合材料。对复合材料的结构形态、硬度和冲击韧性进行了分析,发现含有5vol%纳米颗粒的AZ91合金复合材料具有均匀的颗粒分布、更高的硬度(97.6HV)和21.2J/mm的最佳韧性。然而,由于存在硬度较高的硬质磨粒,复合材料在加工过程中面临困难,导致刀具磨损。本实验通过使用碳化钨涂层立铣刀,预测了镁合金纳米复合材料(AZ91/5vol%)在立铣加工过程中的最佳铣削参数,以实现最大的金属去除率,同时通过通用线性模型(GLM)方差分析方法分析较低的表面粗糙度和刀具磨损情况。立铣加工的输入条件各不相同,如进给速度(0.1 - 0.4mm/转)、切削深度(0.05 - 0.2mm)和主轴转速(250 - 1000rpm)。在方差分析GLM方法中,固定了L16设计实验以进行进一步的交互作用分析。切削深度和进给速度所预测的结果具有主导性,在决定刀具磨损、表面粗糙度和金属去除率方面起着主要作用。