Suppr超能文献

在禁食期间,转录级联反应放大糖异生作用,并引发酮基因转录的二次波。

Transcriptional cascades during fasting amplify gluconeogenesis and instigate a secondary wave of ketogenic gene transcription.

机构信息

Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.

出版信息

Liver Int. 2024 Nov;44(11):2964-2982. doi: 10.1111/liv.16077. Epub 2024 Aug 20.

Abstract

BACKGROUND AND AIMS

During fasting, bodily homeostasis is maintained due to hepatic production of glucose (gluconeogenesis) and ketone bodies (ketogenesis). The main hormones governing hepatic fuel production are glucagon and glucocorticoids that initiate transcriptional programs aimed at supporting gluconeogenesis and ketogenesis.

METHODS

Using primary mouse hepatocytes as an ex vivo model, we employed transcriptomic analysis (RNA-seq), genome-wide profiling of enhancer dynamics (ChIP-seq), perturbation experiments (inhibitors, shRNA), hepatic glucose production measurements and computational analyses.

RESULTS

We found that in addition to the known metabolic genes transcriptionally induced by glucagon and glucocorticoids, these hormones induce a set of genes encoding transcription factors (TFs) thereby initiating transcriptional cascades. Upon activation by glucocorticoids, the glucocorticoid receptor (GR) induced the genes encoding two TFs: CCAAT/enhancer-binding protein beta (C/EBPβ) and peroxisome proliferator-activated receptor alpha (PPARα). We found that the GR-C/EBPβ cascade mainly serves as a secondary amplifier of primary hormone-induced gene programs. C/EBPβ augmented gluconeogenic gene expression and hepatic glucose production. Conversely, the GR-PPARα cascade initiated a secondary transcriptional wave of genes supporting ketogenesis. The cascade led to synergistic induction of ketogenic genes which is dependent on protein synthesis. Genome-wide analysis of enhancer dynamics revealed numerous enhancers activated by the GR-PPARα cascade. These enhancers were proximal to ketogenic genes, enriched for the PPARα response element and showed increased PPARα binding.

CONCLUSION

This study reveals abundant transcriptional cascades occurring during fasting. These cascades serve two separated purposes: the amplification of the gluconeogenic transcriptional program and the induction of a gene program aimed at enhancing ketogenesis.

摘要

背景与目的

在禁食期间,肝脏产生葡萄糖(糖异生)和酮体(酮生成)来维持身体内环境稳态。调节肝脏燃料生成的主要激素是胰高血糖素和糖皮质激素,它们启动旨在支持糖异生和酮生成的转录程序。

方法

我们使用原代小鼠肝细胞作为体外模型,采用转录组分析(RNA-seq)、全基因组增强子动态分析(ChIP-seq)、扰动实验(抑制剂、shRNA)、肝葡萄糖生成测量和计算分析。

结果

我们发现,除了已知的受胰高血糖素和糖皮质激素转录诱导的代谢基因外,这些激素还诱导一组编码转录因子(TFs)的基因,从而启动转录级联反应。糖皮质激素受体(GR)激活后,诱导编码两个 TF 的基因:CCAAT/增强子结合蛋白β(C/EBPβ)和过氧化物酶体增殖物激活受体α(PPARα)。我们发现,GR-C/EBPβ级联反应主要作为初级激素诱导基因程序的二级放大器。C/EBPβ增强糖异生基因表达和肝葡萄糖生成。相反,GR-PPARα级联反应启动了支持酮生成的次级转录波。该级联反应导致支持酮生成的基因协同诱导,这依赖于蛋白质合成。全基因组增强子动态分析揭示了大量受 GR-PPARα级联反应激活的增强子。这些增强子靠近酮生成基因,富含 PPARα 反应元件,并显示出 PPARα 结合增加。

结论

本研究揭示了在禁食期间发生的丰富转录级联反应。这些级联反应有两个独立的目的:放大糖异生转录程序和诱导旨在增强酮生成的基因程序。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验