Suppr超能文献

为各向异性粗粒化粒子扩展密度关联机器学习表示法。

Expanding density-correlation machine learning representations for anisotropic coarse-grained particles.

作者信息

Lin Arthur, Huguenin-Dumittan Kevin K, Cho Yong-Cheol, Nigam Jigyasa, Cersonsky Rose K

机构信息

Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706, USA.

Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.

出版信息

J Chem Phys. 2024 Aug 21;161(7). doi: 10.1063/5.0210910.

Abstract

Physics-based, atom-centered machine learning (ML) representations have been instrumental to the effective integration of ML within the atomistic simulation community. Many of these representations build off the idea of atoms as having spherical, or isotropic, interactions. In many communities, there is often a need to represent groups of atoms, either to increase the computational efficiency of simulation via coarse-graining or to understand molecular influences on system behavior. In such cases, atom-centered representations will have limited utility, as groups of atoms may not be well-approximated as spheres. In this work, we extend the popular Smooth Overlap of Atomic Positions (SOAP) ML representation for systems consisting of non-spherical anisotropic particles or clusters of atoms. We show the power of this anisotropic extension of SOAP, which we deem AniSOAP, in accurately characterizing liquid crystal systems and predicting the energetics of Gay-Berne ellipsoids and coarse-grained benzene crystals. With our study of these prototypical anisotropic systems, we derive fundamental insights on how molecular shape influences mesoscale behavior and explain how to reincorporate important atom-atom interactions typically not captured by coarse-grained models. Moving forward, we propose AniSOAP as a flexible, unified framework for coarse-graining in complex, multiscale simulation.

摘要

基于物理的、以原子为中心的机器学习(ML)表示法对于在原子模拟社区中有效整合ML起到了重要作用。许多这样的表示法都是基于原子具有球形或各向同性相互作用的理念构建的。在许多领域,常常需要表示原子组,要么是为了通过粗粒化提高模拟的计算效率,要么是为了理解分子对系统行为的影响。在这种情况下,以原子为中心的表示法效用有限,因为原子组可能无法很好地近似为球体。在这项工作中,我们将流行的原子位置平滑重叠(SOAP)ML表示法扩展到由非球形各向异性粒子或原子簇组成的系统。我们展示了这种SOAP的各向异性扩展(我们称之为AniSOAP)在准确表征液晶系统以及预测盖伊 - 伯尔尼椭球体和粗粒化苯晶体的能量学方面的能力。通过对这些典型各向异性系统的研究,我们获得了关于分子形状如何影响中尺度行为的基本见解,并解释了如何重新纳入粗粒化模型通常未捕捉到的重要原子 - 原子相互作用。展望未来,我们提出AniSOAP作为复杂多尺度模拟中粗粒化的灵活统一框架。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验