Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen76344, Germany.
Department of Mechanical Engineering, Clemson University, Clemson, South Carolina29634, United States.
J Chem Theory Comput. 2023 Feb 14;19(3):910-923. doi: 10.1021/acs.jctc.2c00960. Epub 2023 Jan 16.
Coarse grained (CG) molecular dynamics simulations are widely used to accelerate atomistic simulations but generally lack a formalism to preserve the dynamics of the system. For spherical particles, the Mori-Zwanzig approach, while computationally complex, has ameliorated this problem. Here we present an anisotropic dissipative particle dynamics (ADPD) model as an extension of this approach, which accounts for the anisotropy for both conservative and nonconservative interactions. For a simple anisotropic system we parametrize the coarse grained force field representing ellipsoidal CG particles from the full-atomistic simulation. To represent the anisotropy of the system, both the conservative and dissipative terms are approximated using the Gay-Berne (GB) functional forms via a force-matching approach. We compare our model with other CG models and demonstrate that it yields better results in both static and dynamical properties. The inclusion of the anisotropic nonconservative force preserves the microscopic dynamical details, and hence the dynamical properties, such as diffusivity, can be better reproduced by the aspherical model. By generalizing the isotropic DPD model, this framework is effective and promising for the development of the CG model for polymers, macromolecules, and biological systems.
粗粒化(CG)分子动力学模拟被广泛用于加速原子模拟,但通常缺乏一种形式来保留系统的动力学。对于球形粒子, Mori-Zwanzig 方法虽然计算复杂,但已经改善了这个问题。在这里,我们提出了一种各向异性耗散粒子动力学(ADPD)模型作为该方法的扩展,该模型考虑了保守和非保守相互作用的各向异性。对于一个简单的各向异性系统,我们从全原子模拟中参数化代表椭球 CG 粒子的粗粒化力场。为了表示系统的各向异性,通过力匹配方法,保守项和耗散项都使用 Gay-Berne(GB)函数形式来近似。我们将我们的模型与其他 CG 模型进行比较,并证明它在静态和动态特性方面都能产生更好的结果。各向异性非保守力的包含保留了微观动力学细节,因此,扩散率等动态特性可以通过非球形模型更好地再现。通过将各向同性 DPD 模型推广,该框架对于开发用于聚合物、大分子和生物系统的 CG 模型是有效和有前途的。