Suppr超能文献

一种用于预测核小体结构的集成机器学习模型。

An integrated machine-learning model to predict nucleosome architecture.

机构信息

Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.

Departament de Bioquímica i Biomedicina, Universitat de Barcelona, Barcelona, Spain.

出版信息

Nucleic Acids Res. 2024 Sep 23;52(17):10132-10143. doi: 10.1093/nar/gkae689.

Abstract

We demonstrate that nucleosomes placed in the gene body can be accurately located from signal decay theory assuming two emitters located at the beginning and at the end of genes. These generated wave signals can be in phase (leading to well defined nucleosome arrays) or in antiphase (leading to fuzzy nucleosome architectures). We found that the first (+1) and the last (-last) nucleosomes are contiguous to regions signaled by transcription factor binding sites and unusual DNA physical properties that hinder nucleosome wrapping. Based on these analyses, we developed a method that combines Machine Learning and signal transmission theory able to predict the basal locations of the nucleosomes with an accuracy similar to that of experimental MNase-seq based methods.

摘要

我们证明,假设基因的两端各有一个发射器,通过信号衰减理论可以准确地定位基因内的核小体。这些产生的波信号可以同相(导致核小体阵列清晰)或反相(导致核小体结构模糊)。我们发现,第一个(+1)核小体和最后一个(-last)核小体与转录因子结合位点和阻碍核小体包装的异常 DNA 物理性质所标记的区域紧密相连。基于这些分析,我们开发了一种将机器学习和信号传输理论相结合的方法,能够以与实验性 MNase-seq 方法相似的准确度预测核小体的基本位置。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b67/11417389/dec58b48e00e/gkae689figgra1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验