Faculty of Economics and Management, University of Sfax, Sfax, Tunisia.
Environ Sci Pollut Res Int. 2024 Aug;31(40):52841-52854. doi: 10.1007/s11356-024-34737-1. Epub 2024 Aug 20.
With the rising momentum according to the environmentalist voices seeking climate justice for more equity and the importance of encouraging environmental justice mechanisms and tools, in this perspective, the objective of this study is to analyze in depth the substantial role of natural resources abundance in the environmental inequality issue. For this purpose, this study adopted the eXtreme Gradient Boosting (XGBoost), LightGBM, Natural Gradient Boosting (NGBoost), Hybrid hybrid upper confidence bound-long short-term memory-Genetic Algorithm (UCB-LSTM-GA), and the Shapley Additive Explanation (SAE) machine learning algorithms in the context of 21 emerging economies spanning the years 2001 to 2019. The empirical results reveal that natural resource abundance, foreign trade, and foreign direct investment inflows contribute all to higher levels of environmental inequality. However, higher levels of per capita income, gross fixed capital formation, and institutional quality contribute to lower levels of environmental inequality. Addressing climate justice holistically through an integrated supranational vision is significant since every step taken toward eradicating environmental racism matters.
随着环保主义者呼吁更加公平地实现气候正义以及鼓励环境正义机制和工具的重要性的呼声日益高涨,从这个角度来看,本研究的目的是深入分析自然资源丰度在环境不平等问题中的实质性作用。为此,本研究在 21 个新兴经济体的 2001 年至 2019 年期间,采用了极端梯度提升(XGBoost)、轻梯度提升(LightGBM)、自然梯度提升(NGBoost)、混合上置信区间长短期记忆遗传算法(UCB-LSTM-GA)和 Shapley 加法解释(SAE)机器学习算法。实证结果表明,自然资源丰度、对外贸易和外国直接投资流入都导致了更高水平的环境不平等。然而,人均收入、固定资本形成总额和制度质量水平的提高则有助于降低环境不平等程度。通过综合的跨国界愿景全面解决气候正义问题非常重要,因为消除环境种族主义的每一步都很重要。