Data Sciences & Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, England.
Functional Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, England.
PLoS One. 2024 Aug 20;19(8):e0307445. doi: 10.1371/journal.pone.0307445. eCollection 2024.
An arrayed CRISPR screen is a high-throughput functional genomic screening method, which typically uses 384 well plates and has different gene knockouts in different wells. Despite various computational workflows, there is currently no systematic way to find what is a good workflow for arrayed CRISPR screening data analysis. To guide this choice, we developed a statistical simulation model that mimics the data generating process of arrayed CRISPR screening experiments. Our model is flexible and can simulate effects on phenotypic readouts of various experimental factors, such as the effect size of gene editing, as well as biological and technical variations. With two examples, we showed that the simulation model can assist making principled choice of normalization and hit calling method for the arrayed CRISPR data analysis. This simulation model is implemented in an R package and can be downloaded from Github.
基因敲除芯片是一种高通量的功能基因组筛选方法,通常使用 384 孔板,在不同的孔中具有不同的基因敲除。尽管有各种计算工作流程,但目前还没有系统的方法来找到基因敲除芯片筛选数据分析的好工作流程。为了指导这种选择,我们开发了一个统计模拟模型,该模型模拟了基因敲除芯片筛选实验的数据生成过程。我们的模型具有灵活性,可以模拟各种实验因素(例如基因编辑的效应大小)以及生物和技术变化对表型读数的影响。通过两个示例,我们表明模拟模型可以帮助对基因敲除芯片数据分析的归一化和命中调用方法进行有原则的选择。这个模拟模型是用 R 包实现的,可以从 Github 上下载。