Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA.
Biomedical Sciences Graduate Program, University of California, San Diego, San Diego, CA 92093, USA.
J Mol Biol. 2019 Jan 4;431(1):48-65. doi: 10.1016/j.jmb.2018.06.034. Epub 2018 Jun 28.
RNA-guided CRISPR (clustered regularly interspaced short palindromic repeat)-associated Cas proteins have recently emerged as versatile tools to investigate and engineer the genome. The programmability of CRISPR-Cas has proven especially useful for probing genomic function in high-throughput. Facile single-guide RNA library synthesis allows CRISPR-Cas screening to rapidly investigate the functional consequences of genomic, transcriptomic, and epigenomic perturbations. Furthermore, by combining CRISPR-Cas perturbations with downstream single-cell analyses (flow cytometry, expression profiling, etc.), forward screens can generate robust data sets linking genotypes to complex cellular phenotypes. In the following review, we highlight recent advances in CRISPR-Cas genomic screening while outlining protocols and pitfalls associated with screen implementation. Finally, we describe current challenges limiting the utility of CRISPR-Cas screening as well as future research needed to resolve these impediments. As CRISPR-Cas technologies develop, so too will their clinical applications. Looking ahead, patient centric functional screening in primary cells will likely play a greater role in disease management and therapeutic development.
RNA 引导的 CRISPR(成簇规律间隔短回文重复)相关 Cas 蛋白已迅速成为研究和工程基因组的多功能工具。CRISPR-Cas 的可编程性对于高通量研究基因组功能尤为有用。简便的单指导 RNA 文库合成允许 CRISPR-Cas 筛选快速研究基因组、转录组和表观基因组扰动的功能后果。此外,通过将 CRISPR-Cas 扰动与下游单细胞分析(流式细胞术、表达谱分析等)相结合,正向筛选可以生成将基因型与复杂细胞表型联系起来的稳健数据集。在接下来的综述中,我们强调了 CRISPR-Cas 基因组筛选的最新进展,同时概述了与筛选实施相关的方案和陷阱。最后,我们描述了限制 CRISPR-Cas 筛选效用的当前挑战以及解决这些障碍所需的未来研究。随着 CRISPR-Cas 技术的发展,其临床应用也将得到发展。展望未来,以患者为中心的原发性细胞功能筛选可能在疾病管理和治疗开发中发挥更大的作用。