Laboratoire de physique de l'École normale supérieure, CNRS, Paris Sciences et Lettres University, Sorbonne Université, and Université Paris-Cité, Paris 75005, France.
Large Molecule Research, Sanofi, Vitry-sur-Seine 94 400, France.
Proc Natl Acad Sci U S A. 2024 Aug 27;121(35):e2401058121. doi: 10.1073/pnas.2401058121. Epub 2024 Aug 20.
B cell receptors (BCRs) play a crucial role in recognizing and fighting foreign antigens. High-throughput sequencing enables in-depth sampling of the BCRs repertoire after immunization. However, only a minor fraction of BCRs actively participate in any given infection. To what extent can we accurately identify antigen-specific sequences directly from BCRs repertoires? We present a computational method grounded on sequence similarity, aimed at identifying statistically significant responsive BCRs. This method leverages well-known characteristics of affinity maturation and expected diversity. We validate its effectiveness using longitudinally sampled human immune repertoire data following influenza vaccination and SARS-CoV-2 infections. We show that different lineages converge to the same responding Complementarity Determining Region 3, demonstrating convergent selection within an individual. The outcomes of this method hold promise for application in vaccine development, personalized medicine, and antibody-derived therapeutics.
B 细胞受体 (BCR) 在识别和对抗外来抗原方面发挥着关键作用。高通量测序使我们能够在免疫后深入采样 BCR 库。然而,只有一小部分 BCR 会在任何给定的感染中积极参与。我们能够在多大程度上直接从 BCR 库中准确识别抗原特异性序列?我们提出了一种基于序列相似性的计算方法,旨在识别具有统计学意义的反应性 BCR。该方法利用了亲和力成熟和预期多样性的已知特征。我们使用流感疫苗接种和 SARS-CoV-2 感染后纵向采样的人类免疫库数据验证了其有效性。我们表明,不同的谱系会汇聚到相同的反应性互补决定区 3,证明了个体内的趋同选择。该方法的结果有望应用于疫苗开发、个性化医疗和抗体衍生的治疗。