Suppr超能文献

通过结合化学见解增强的预训练模型对光谱和结构描述符进行跨模态预测。

Cross-Modal Prediction of Spectral and Structural Descriptors via a Pretrained Model Enhanced with Chemical Insights.

作者信息

Yang Guokun, Jiang Shuang, Luo Yi, Wang Song, Jiang Jun

机构信息

Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.

出版信息

J Phys Chem Lett. 2024 Aug 29;15(34):8766-8772. doi: 10.1021/acs.jpclett.4c02129. Epub 2024 Aug 20.

Abstract

Proposing and utilizing machine learning descriptors for chemical property prediction and material screening have become a cutting-edge field in artificial intelligence-enabled chemical research. However, a single descriptor typically captures only partial features of a chemical object, resulting in an information deficiency and limiting generalizability. Obtaining a comprehensive set of descriptors is essential but challenging, especially when accessing some microlevel structural and electronic features due to technological limitations. Herein, we exploit multimodal chemical descriptors to construct an encoder-decoder machine learning framework that enables the cross-modal prediction of spectral and structural descriptors. By pretraining the model to endow it with chemical insights, the multimodal data fusion is implemented in a descriptor-encoded hidden layer. The model's capabilities are validated in the system of CO/NO adsorption on Au/Ag surfaces, demonstrating successful reciprocal prediction of infrared spectra, Raman spectra, and internal coordinates. This work provides a proof-of-concept for the feasibility of cross-modal predictions between different chemical features and will significantly reduce the machine learning model's dependence on complete physicochemical parameters and improve its multitarget prediction capabilities.

摘要

提出并利用机器学习描述符进行化学性质预测和材料筛选已成为人工智能辅助化学研究中的一个前沿领域。然而,单个描述符通常只能捕捉化学对象的部分特征,导致信息不足并限制了通用性。获取一组全面的描述符至关重要但具有挑战性,特别是由于技术限制而难以获取一些微观结构和电子特征时。在此,我们利用多模态化学描述符构建了一个编码器 - 解码器机器学习框架,该框架能够对光谱和结构描述符进行跨模态预测。通过对模型进行预训练以赋予其化学见解,多模态数据融合在描述符编码的隐藏层中实现。该模型的能力在CO/NO在Au/Ag表面吸附的系统中得到验证,证明了对红外光谱、拉曼光谱和内部坐标的成功相互预测。这项工作为不同化学特征之间跨模态预测的可行性提供了概念验证,并将显著降低机器学习模型对完整物理化学参数的依赖,提高其多目标预测能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验