Suppr超能文献

光学相干断层扫描

Optical Coherence Tomography

作者信息

Enaholo Ehimare S., Musa Mutali J., Zeppieri Marco

机构信息

Centre for Sight

University of Benin, Benin City, Edo State

Abstract

Optical coherence tomography (OCT) is a noninvasive imaging technique that uses visible and infrared electromagnetic waves to provide detailed, cross-sectional images of body tissues. OCT has widespread application in ocular imaging to diagnose and monitor various ophthalmic pathologies in both the anterior and posterior segments. OCT is commonly employed in evaluating and managing vitreoretinal and macular diseases in addition to processes affecting the optic nerve head, including glaucoma. OCT has evolved considerably since its invention in the early 1990s and the introduction of the first commercial ophthalmological device in 1996. The 3 main types of OCT are time-domain, spectral-domain, and swept-source. These types differ in image acquisition, scanning speed, axial and transverse resolution, and range of imaging. Time-domain OCT (TD-OCT) is a first-generation technology that uses a low-coherence interferometer to measure the time delay and magnitude of backscattered light from different tissue depths, subsequently constructing two-dimensional images in a manner similar to ultrasound technology. However, TD-OCT measures only one point at a time, and the coherence length of the light source limits depth resolution. TD-OCT typically uses a superluminescent diode with a relatively broad spectrum as its light source, resulting in decreased image resolution compared to newer technologies. TD-OCT has largely been replaced by techniques that offer faster acquisition speeds, higher image resolution, and a better range of imaging. Spectral-domain OCT (SD-OCT) is a second-generation technology with significantly faster acquisition speeds, deeper tissue penetration, and higher image resolution. SD-OCT uses a spectrometer to detect the spectrum of backscattered light, allowing simultaneous measurement of multiple tissue points. Higher-speed data acquisition enables three-dimensional tissue imaging and improved resolution. SD-OCT uses Fourier transformations to generate high-resolution, cross-sectional images of biological tissues. In SD-OCT, a broadband superluminescent diode source is used to illuminate the tissue. Light reflected from the tissue is detected using a spectrometer that separates the reflected light into its constituent wavelengths. Interference patterns between the reflected light and a reference beam are measured for each wavelength and processed using Fourier transformations to generate high-resolution images. Due to its improved imaging capabilities, SD-OCT has become the standard for clinical use in ophthalmology, enabling earlier diagnosis and management of conditions such as age-related macular degeneration, diabetic retinopathy, and glaucoma. SD-OCT also has clinical applications in dermatology, cardiology, and gastroenterology. Enhanced depth imaging (EDI) in SD-OCT is an imaging modality that places the objective lens in a closer scanning position to the eye, permitting better depth sensitivity and improved visualization of deeper ocular structures, particularly the choroid. EDI-OCT is particularly useful when diagnosing and managing diseases that affect the choroid, such as age-related macular degeneration, choroidal neovascularization, polypoidal choroidal vasculopathy, and central serous chorioretinopathy. EDI-OCT can also provide crucial information about the thickness of the retina and the presence of fluid or swelling in the retina or choroid. Modern SD-OCT and swept-source OCT (SS-OCT) machines are capable of acquiring enhanced depth images.  SS-OCT is an advanced noninvasive medical imaging technique that uses a wavelength-sweeping laser and a single dual-balanced photodetector to capture high-resolution images of the anterior segment, retina, optic nerve, and choroid. The longer wavelength of the light source permits deeper tissue penetration and faster scanning speeds, resulting in excellent widefield visualization of posterior segment eye structures superior to SD-OCT with EDI.  OCT angiography (OCTA) is a noninvasive imaging method that gives a three-dimensional visualization of blood vessels at different tissue levels within the retina and choroid. The images captured by OCTA provide details far superior to those obtained using conventional fundus fluorescein angiography or indocyanine green angiography; OCTA does not carry the time requirement or risks associated with systemic contrast administration. OCTA has multiple applications in neuro-ophthalmology, including multiple sclerosis, anterior ischemic neuropathy, hereditary optic neuropathy, and glaucoma.

摘要

光学相干断层扫描(OCT)是一种非侵入性成像技术,它利用可见光和红外电磁波来提供人体组织的详细横断面图像。OCT在眼部成像中有着广泛应用,可用于诊断和监测眼前段和眼后段的各种眼科疾病。除了评估和管理玻璃体视网膜及黄斑疾病外,OCT还常用于评估和处理影响视神经乳头的疾病,包括青光眼。自20世纪90年代初发明并于1996年推出首款商用眼科设备以来,OCT有了很大发展。OCT主要有三种类型:时域OCT、谱域OCT和扫频源OCT。这些类型在图像采集、扫描速度、轴向和横向分辨率以及成像范围等方面存在差异。时域OCT(TD-OCT)是第一代技术,它使用低相干干涉仪来测量来自不同组织深度的后向散射光的时间延迟和幅度,随后以类似于超声技术的方式构建二维图像。然而,TD-OCT一次仅测量一个点,并且光源的相干长度限制了深度分辨率。TD-OCT通常使用具有相对较宽光谱的超发光二极管作为其光源,与更新的技术相比,这导致图像分辨率降低。TD-OCT在很大程度上已被提供更快采集速度、更高图像分辨率和更好成像范围的技术所取代。谱域OCT(SD-OCT)是第二代技术,具有显著更快的采集速度、更深的组织穿透深度和更高的图像分辨率。SD-OCT使用光谱仪检测后向散射光的光谱,允许同时测量多个组织点。更高速度的数据采集实现了三维组织成像并提高了分辨率。SD-OCT使用傅里叶变换来生成生物组织的高分辨率横断面图像。在SD-OCT中,使用宽带超发光二极管源照射组织。使用光谱仪检测从组织反射的光,该光谱仪将反射光分离成其组成波长。针对每个波长测量反射光与参考光束之间的干涉图案,并使用傅里叶变换进行处理以生成高分辨率图像。由于其成像能力的提高,SD-OCT已成为眼科临床应用的标准,能够更早地诊断和管理诸如年龄相关性黄斑变性、糖尿病性视网膜病变和青光眼等疾病。SD-OCT在皮肤科、心脏病学和胃肠病学中也有临床应用。SD-OCT中的增强深度成像(EDI)是一种成像模式,它将物镜置于更靠近眼睛的扫描位置,从而具有更好的深度敏感性并能更好地显示更深层眼部结构,特别是脉络膜。当诊断和管理影响脉络膜的疾病,如年龄相关性黄斑变性、脉络膜新生血管、息肉样脉络膜血管病变和中心性浆液性脉络膜视网膜病变时,EDI-OCT特别有用。EDI-OCT还可以提供有关视网膜厚度以及视网膜或脉络膜中液体或肿胀情况的关键信息。现代SD-OCT和扫频源OCT(SS-OCT)机器能够采集增强深度图像。SS-OCT是一种先进的非侵入性医学成像技术,它使用波长扫描激光器和单个双平衡光电探测器来捕获眼前段、视网膜、视神经和脉络膜的高分辨率图像。光源的较长波长允许更深的组织穿透深度和更快的扫描速度,从而能够出色地全景显示眼后段结构,优于带有EDI的SD-OCT。OCT血管造影(OCTA)是一种非侵入性成像方法,可对视网膜和脉络膜内不同组织层面的血管进行三维可视化。OCTA捕获的图像提供的细节远优于使用传统眼底荧光血管造影或吲哚菁绿血管造影获得的细节;OCTA不需要全身注射造影剂所需的时间,也没有相关风险。OCTA在神经眼科中有多种应用,包括多发性硬化症、前部缺血性神经病、遗传性视神经病变和青光眼。

相似文献

5
En face enhanced-depth swept-source optical coherence tomography features of chronic central serous chorioretinopathy.
Ophthalmology. 2014 Mar;121(3):719-26. doi: 10.1016/j.ophtha.2013.10.014. Epub 2013 Nov 26.
7
[A new approach for studying the retinal and choroidal circulation].
Nippon Ganka Gakkai Zasshi. 2004 Dec;108(12):836-61; discussion 862.
10
Comparison of ultrahigh- and standard-resolution optical coherence tomography for imaging macular pathology.
Ophthalmology. 2005 Nov;112(11):1922.e1-15. doi: 10.1016/j.ophtha.2005.05.027. Epub 2005 Sep 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验