Suppr超能文献

先进功能多孔材料对基于重金属的有毒含氧污染物的螯合作用以实现安全饮用水供应

Heavy Metal-Based Toxic Oxo-Pollutants Sequestration by Advanced Functional Porous Materials for Safe Drinking Water.

作者信息

Dutta Subhajit, Fajal Sahel, Ghosh Sujit K

机构信息

Department of Chemistry and Centre for Water Research (CWR), Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.

出版信息

Acc Chem Res. 2024 Sep 3;57(17):2546-2560. doi: 10.1021/acs.accounts.4c00348. Epub 2024 Aug 20.

Abstract

ConspectusWater scarcity as a consequence of either environmental or economic actions is the most compelling global concern of the 21st century, as ∼2 billion people (26% of the total population) struggle to access safe drinking water and ∼3.6 billion (46% of the total population) lack access to clean water sanitation. In this context, groundwater pollution by toxic heavy metals and/or their oxo-pollutants, such as CrO, CrO, AsO, SeO, SeO, TcO, UO, etc., have been becoming rapidly growing global concerns. The severe toxicity upon bioaccumulation of these oxo-anions has prompted the US Environment Protection Agency (EPA) to mark these persistent and hazardous substances as priority pollutants. Additionally, the heavy-metal-based pollutants are difficult to transform into eco-friendly substances, thus presenting serious challenges toward human health and environmental preservation. To this end, the emergence of advanced functional porous materials (AFPMs), including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), metal-organic polyhedrons (MOPs), porous organic polymers (POPs), etc., have presented extraordinary opportunities in material research and water treatment applications. The liberty in designing and structural tunability of AFPMs, facilitated by utilization of structure-encoded molecular building blocks, enables precise control over target-specificity and structure-property correlations. Bridging the gap between strategic material design and on-demand real-world application can facilitate the development of next-generation sorbents/ion-exchangers for efficient water treatment.In this Account, we summarize the recent advancements from our group toward the development of cutting-edge multifunctional ionic-porous sorbents, offering viable solutions toward providing clean and safe drinking water. Our vision allows us to comprehend this challenge through two strategic factors: efficient oxo-anion capture via ion-exchange and specific host-guest interactions via installation of modular functional groups. To provide an overview, we first highlight the different structural variants and coexistance of various toxic oxo-anions depending on the pH of the medium and their adverse effects. Next, we highlight the promising potential of water stable cationic MOFs toward selective remediation of toxic Cr(VI), Mn(VII), Tc(VI), Se(IV), Se(VI), U (VI), As(III), and As(V)-based toxic oxo-pollutants from water. In the subsequent sections, we summarize the target-specific design strategies and oxo-anion remediation performances of ionic porous organic polymers and hybrid functional porous materials. The key role of target-specific designability and/or structural fine-tuning of AFPMs toward preferential sorption of oxo-pollutants is systematically demonstrate. Particularly, the role of ion-exchange (anion-exchange) processes toward targeted oxo-pollutant capture by ionic AFPMs has been discussed in details. In several examples, the AFPMs were successful in reducing the toxic oxo-anion concentration levels lower than the permitted values for drinking water by the World Health Organizing Committee (WHO), showcasing their real-world applicability potency.Our contemporaneous endeavors in exploring ionic AFPMs for selective toxic oxo-anion sequestration may serve as a blueprint to researchers for future development of the next generation sorbent materials for energy-economically feasible water treatment methods.

摘要

概述

由于环境或经济行为导致的水资源短缺是21世纪最紧迫的全球问题,约20亿人(占总人口的26%)难以获得安全饮用水,约36亿人(占总人口的46%)缺乏清洁水卫生设施。在这种背景下,有毒重金属和/或其含氧污染物(如CrO、CrO、AsO、SeO、SeO、TcO、UO等)对地下水的污染已成为全球日益关注的问题。这些含氧阴离子生物累积时的剧毒促使美国环境保护局(EPA)将这些持久性有害物质列为优先污染物。此外,重金属基污染物难以转化为生态友好型物质,因此对人类健康和环境保护构成严峻挑战。为此,包括金属有机框架(MOF)、共价有机框架(COF)、金属有机多面体(MOP)、多孔有机聚合物(POP)等在内的先进功能多孔材料(AFPM)的出现,为材料研究和水处理应用带来了非凡机遇。通过利用结构编码的分子构建块实现的AFPM设计自由度和结构可调性,能够精确控制目标特异性和结构-性能相关性。弥合战略材料设计与按需实际应用之间的差距,有助于开发用于高效水处理的下一代吸附剂/离子交换剂。

在本综述中,我们总结了我们团队在开发前沿多功能离子多孔吸附剂方面的最新进展,为提供清洁安全的饮用水提供了可行的解决方案。我们的愿景使我们能够通过两个战略因素来理解这一挑战:通过离子交换高效捕获含氧阴离子,以及通过安装模块化官能团实现特定主客体相互作用。为了提供一个概述,我们首先强调了不同结构变体以及各种有毒含氧阴离子根据介质pH值的共存情况及其不利影响。接下来,我们强调了水稳定阳离子MOF对水中有毒Cr(VI)、Mn(VII)、Tc(VI)、Se(IV)、Se(VI)、U(VI)、As(III)和As(V)基有毒含氧污染物进行选择性修复的潜力。在后续章节中,我们总结了离子多孔有机聚合物和混合功能多孔材料的目标特异性设计策略和含氧阴离子修复性能。系统地展示了AFPM的目标特异性设计能力和/或结构微调对含氧污染物优先吸附的关键作用。特别是,详细讨论了离子交换(阴离子交换)过程对离子型AFPM捕获目标含氧污染物的作用。在几个例子中,AFPM成功地将有毒含氧阴离子浓度降低到世界卫生组织(WHO)规定的饮用水允许值以下,展示了它们在实际应用中的潜力。

我们在探索离子型AFPM用于选择性捕获有毒含氧阴离子方面的同步努力,可为研究人员未来开发用于能源经济可行的水处理方法的下一代吸附剂材料提供蓝图。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验