Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA; email:
Annu Rev Microbiol. 2024 Nov;78(1):463-492. doi: 10.1146/annurev-micro-041522-103400. Epub 2024 Nov 7.
For more than 3.5 billion years, life experienced dramatic environmental extremes on Earth. These include shifts from oxygen-less to overoxygenated atmospheres and cycling between hothouse conditions and global glaciations. Meanwhile, an ecological revolution took place. Earth evolved from one dominated by microbial life to one containing the plants and animals that are most familiar today. Many key cellular features evolved early in the history of life, collectively defining the nature of our biosphere and underpinning human survival. Recent advances in molecular biology and bioinformatics have greatly improved our understanding of microbial evolution across deep time. However, the incorporation of molecular genetics, population biology, and evolutionary biology approaches into the study of Precambrian biota remains a significant challenge. This review synthesizes our current knowledge of early microbial life with an emphasis on ancient metabolisms. It also outlines the foundations of an emerging interdisciplinary area that integrates microbiology, paleobiology, and evolutionary synthetic biology to reconstruct ancient biological innovations.
35 亿多年来,地球上的生命经历了剧烈的环境极端变化。这些变化包括从无氧大气到过氧大气的转变,以及温室条件和全球冰川作用之间的循环。与此同时,一场生态革命发生了。地球从以微生物生命为主的世界演变为今天我们所熟悉的植物和动物的世界。许多关键的细胞特征在生命历史的早期就进化了,它们共同定义了我们的生物圈的性质,并为人类的生存提供了基础。分子生物学和生物信息学的最新进展极大地提高了我们对微生物在深时进化的理解。然而,将分子遗传学、种群生物学和进化生物学方法纳入前寒武纪生物群的研究仍然是一个重大挑战。这篇综述综合了我们目前对早期微生物生命的认识,重点介绍了古代代谢。它还概述了一个新兴的跨学科领域的基础,该领域将微生物学、古生物学和进化综合生物学结合起来,以重建古代的生物创新。