Amritkar Kaustubh, Cuevas-Zuviría Bruno, Kaçar Betül
Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
Biophysics Graduate Degree Program, University of Wisconsin-Madison, Madison, WI, USA.
Mol Biol Evol. 2025 Jan 6;42(1). doi: 10.1093/molbev/msae268.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is an ancient protein critical for CO2-fixation and global biogeochemistry. Form-I RuBisCO complexes uniquely harbor small subunits that form a hexadecameric complex together with their large subunits. The small subunit protein is thought to have significantly contributed to RuBisCO's response to the atmospheric rise of O2 ∼2.5 billion years ago, marking a pivotal point in the enzyme's evolutionary history. Here, we performed a comprehensive evolutionary analysis of extant and ancestral RuBisCO sequences and structures to explore the impact of the small subunit's earliest integration on the molecular dynamics of the overall complex. Our simulations suggest that the small subunit restricted the conformational flexibility of the large subunit early in its history, impacting the evolutionary trajectory of the Form-I RuBisCO complex. Molecular dynamics investigations of CO2 and O2 gas distribution around predicted ancient RuBisCO complexes suggest that a proposed "CO2-reservoir" role for the small subunit is not conserved throughout the enzyme's evolutionary history. The evolutionary and biophysical response of RuBisCO to changing atmospheric conditions on ancient Earth showcase multi-level and trackable responses of enzymes to environmental shifts over long timescales.
核酮糖-1,5-二磷酸羧化酶/加氧酶(RuBisCO)是一种对二氧化碳固定和全球生物地球化学至关重要的古老蛋白质。I型RuBisCO复合物独特地含有小亚基,这些小亚基与大亚基一起形成十六聚体复合物。小亚基蛋白被认为在约25亿年前对RuBisCO对大气中氧气增加的反应有重大贡献,这标志着该酶进化历史上的一个关键点。在这里,我们对现存和祖先的RuBisCO序列及结构进行了全面的进化分析,以探索小亚基最早整合对整个复合物分子动力学的影响。我们的模拟表明,小亚基在其历史早期就限制了大亚基的构象灵活性,影响了I型RuBisCO复合物的进化轨迹。对预测的古代RuBisCO复合物周围二氧化碳和氧气气体分布的分子动力学研究表明,小亚基提出的“二氧化碳储存库”作用在整个酶的进化历史中并不保守。RuBisCO对古代地球上不断变化的大气条件的进化和生物物理反应展示了酶在长时间尺度上对环境变化的多层次和可追踪的反应。