XtalPi Inc., 245 Main St, Second Floor, Cambridge, Massachusetts 02142, United States.
China Novartis Institutes for BioMedical Research Co., Ltd., 4218 Jinke Road, Zhanjiang, Shanghai 201203, China.
Mol Pharm. 2024 Sep 2;21(9):4576-4588. doi: 10.1021/acs.molpharmaceut.4c00491. Epub 2024 Aug 20.
The use of different template surfaces in crystallization experiments can directly influence the nucleation kinetics, crystal growth, and morphology of active pharmaceutical ingredients (APIs). Consequently, templated nucleation is an attractive approach to enhance crystal nucleation kinetics and preferentially nucleate desired crystal polymorphs for solid-form drug molecules, particularly large and flexible molecules that are difficult to crystallize. Herein, we investigate the effect of polymer templates on the crystal nucleation of clotrimazole and ketoprofen with both experiments and computational methods. Crystallization was carried out in toluene solvent for both APIs with a template library consisting of 12 different polymers. In complement to the experimental studies, we developed a computational workflow based on molecular dynamics (MD) and derived descriptors from the simulations to score and rank API-polymer interactions. The descriptors were used to measure the energy of interaction (EOI), hydrogen bonding, and rugosity (surface roughness) similarity between the APIs and polymer templates. We used a variety of machine learning models (14 in total) along with these descriptors to predict the crystallization outcome of the polymer templates. We found that simply rank-ordering the polymers by their API-polymer interaction energy descriptors yielded 92% accuracy in predicting the experimental outcome for clotrimazole and ketoprofen. The most accurate machine learning model for both APIs was found to be a random forest model. Using these models, we were able to predict the crystallization outcomes for all polymers. Additionally, we have performed a feature importance analysis using the trained models and found that the most predictive features are the energy descriptors. These results demonstrate that API-polymer interaction energies are correlated with heterogeneous crystallization outcomes.
在结晶实验中使用不同的模板表面会直接影响活性药物成分(API)的成核动力学、晶体生长和形态。因此,模板成核是一种有吸引力的方法,可以增强晶体成核动力学,并优先成核所需的药物分子的晶型,特别是对于难以结晶的大而灵活的分子。在此,我们通过实验和计算方法研究了聚合物模板对克霉唑和酮洛芬晶体成核的影响。在包含 12 种不同聚合物的模板库中,在甲苯溶剂中对两种 API 进行了结晶。除了实验研究外,我们还开发了一种基于分子动力学(MD)的计算工作流程,并从模拟中得出描述符来评分和排列 API-聚合物相互作用。这些描述符用于测量 API 和聚合物模板之间的相互作用能(EOI)、氢键和粗糙度(表面粗糙度)相似性。我们使用了多种机器学习模型(总共 14 个)以及这些描述符来预测聚合物模板的结晶结果。我们发现,仅根据 API-聚合物相互作用能描述符对聚合物进行排序,就能以 92%的准确率预测克霉唑和酮洛芬的实验结果。对于这两种 API,最准确的机器学习模型是随机森林模型。使用这些模型,我们能够预测所有聚合物的结晶结果。此外,我们还使用训练好的模型进行了特征重要性分析,发现最具预测性的特征是能量描述符。这些结果表明,API-聚合物相互作用能与多相结晶结果相关。