Suppr超能文献

炎症刺激响应聚合物囊泡重编程葡萄糖代谢缓解类风湿性关节炎。

Inflammatory stimulus-responsive polymersomes reprogramming glucose metabolism mitigates rheumatoid arthritis.

机构信息

Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China.

Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China.

出版信息

Biomaterials. 2025 Jan;312:122760. doi: 10.1016/j.biomaterials.2024.122760. Epub 2024 Aug 16.

Abstract

Inflammation-resident cells within arthritic sites undergo a metabolic shift towards glycolysis, which greatly aggravates rheumatoid arthritis (RA). Reprogramming glucose metabolism can suppress abnormal proliferation and activation of inflammation-related cells without affecting normal cells, holding potential for RA therapy. Single 2-deoxy-d-glucose (2-DG, glycolysis inhibitor) treatment often cause elevated ROS, which is detrimental to RA remission. The rational combination of glycolysis inhibition with anti-inflammatory intervention might cooperatively achieve favorable RA therapy. To improve drug bioavailability and exert synergetic effect, stable co-encapsulation of drugs in long circulation and timely drug release in inflamed milieu is highly desirable. Herein, we designed a stimulus-responsive hyaluronic acid-triglycerol monostearate polymersomes (HTDD) co-delivering 2-DG and dexamethasone (Dex) to arthritic sites. After intravenous injection, HTDD polymersomes facilitated prolonged circulation and preferential distribution in inflamed sites, where overexpressed matrix metalloproteinases and acidic pH triggered drug release. Results indicated 2-DG can inhibit the excessive cell proliferation and activation, and improve Dex bioavailability by reducing Dex efflux. Dex can suppress inflammatory signaling and prevent 2-DG-induced oxidative stress. Thus, the combinational strategy ultimately mitigated RA by inhibiting glycolysis and hindering inflammatory signaling. Our study demonstrated the great potential in RA therapy by reprogramming glucose metabolism in arthritic sites.

摘要

关节炎部位的炎症驻留细胞发生代谢重编程向糖酵解转变,这极大地加重了类风湿关节炎(RA)。重新编程葡萄糖代谢可以抑制炎症相关细胞的异常增殖和激活,而不影响正常细胞,这为 RA 治疗提供了潜力。单次 2-脱氧-d-葡萄糖(2-DG,糖酵解抑制剂)治疗常导致 ROS 升高,这对 RA 缓解不利。将糖酵解抑制与抗炎干预合理结合可能协同实现有利的 RA 治疗。为了提高药物生物利用度并发挥协同作用,非常需要将药物稳定共包封在长循环和在炎症环境中及时释放。在此,我们设计了一种刺激响应性透明质酸-甘油单硬脂酸酯聚合物囊(HTDD),共同递送至关节炎部位的 2-DG 和地塞米松(Dex)。静脉注射后,HTDD 聚合物囊促进了在炎症部位的延长循环和优先分布,其中过度表达的基质金属蛋白酶和酸性 pH 触发了药物释放。结果表明,2-DG 可以通过减少 Dex 外排来抑制过度的细胞增殖和激活,并提高 Dex 的生物利用度。Dex 可以抑制炎症信号并防止 2-DG 诱导的氧化应激。因此,联合策略最终通过抑制糖酵解和阻碍炎症信号转导来减轻 RA。我们的研究通过在关节炎部位重新编程葡萄糖代谢,展示了在 RA 治疗中的巨大潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验