Suppr超能文献

炎症响应型纳米颗粒抑制淋巴管清除作用以延长关节炎治疗时间。

Inflammation-responsive nanoparticles suppress lymphatic clearance for prolonged arthritis therapy.

机构信息

Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.

Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China..

出版信息

J Control Release. 2022 Dec;352:700-711. doi: 10.1016/j.jconrel.2022.11.005. Epub 2022 Nov 9.

Abstract

The clearance of nanomedicine in inflamed joints has been accelerated due to the increased lymph angiogenesis and lymph flow in arthritic sites. To maximize the therapeutic efficacy for rheumatoid arthritis (RA), it is necessary to facilitate targeted delivery and extended drug retention in inflamed synovium simultaneously. In general, nanosized particles are more likely to achieve prolonged circulation and targeted delivery. While drug carriers with larger dimension might be more beneficial for extending drug retention. To balance the conflicting requirements, an inflammation-responsive shape transformable nanoparticle, comprised of amyloid β-derived KLVFF peptide and polysialic acid (PSA), coupled with therapeutic agent dexamethasone (Dex) via an acid-sensitive linker, was fabricated and termed as Dex-KLVFF-PSA (DKPNPs). Under physiological condition, DKPNPs can keep stable nanosized morphology, and PSA shell could endow DKPNPs with long circulation and active targeting to arthritic sites. While in inflamed joints, acidic pH-triggered Dex dissociation or macrophages-induced specific binding with PSA would induce the re-assembly of DKPNPs from nanoparticles to nanofibers. Our results reveal that intravenously injected DKPNPs display prolonged in vivo circulation and preferential distribution in inflamed joints, where DKPNPs undergo shape transition to fibrous structures, leading to declined lymphatic clearance and prolonged efficacy. Overall, our dual-stimulus responsive transformable nanoparticle offers an intelligent solution to achieve enhanced therapeutic efficacy in RA.

摘要

由于关节炎部位的淋巴管生成和淋巴液流动增加,纳米医学在发炎关节中的清除速度加快。为了最大限度地提高类风湿关节炎 (RA) 的治疗效果,有必要同时促进靶向递药和延长在发炎滑膜中的药物滞留。一般来说,纳米级颗粒更有可能实现延长的循环和靶向递药。而尺寸较大的药物载体可能更有利于延长药物滞留。为了平衡相互冲突的需求,设计并合成了一种由淀粉样β衍生的 KLVFF 肽和聚唾液酸(PSA)组成的、具有炎症响应形状可变形纳米颗粒,通过酸敏感连接子将治疗药物地塞米松(Dex)偶联到纳米颗粒上,称为 Dex-KLVFF-PSA(DKPNPs)。在生理条件下,DKPNPs 可以保持稳定的纳米级形态,而 PSA 壳可以赋予 DKPNPs 长循环和主动靶向关节炎部位的能力。而在发炎的关节中,酸性 pH 触发的 Dex 解离或巨噬细胞诱导的与 PSA 的特异性结合会诱导 DKPNPs 从纳米颗粒重新组装成纳米纤维。我们的结果表明,静脉注射的 DKPNPs 在体内表现出延长的循环时间和优先分布在发炎的关节中,其中 DKPNPs 经历形状转变为纤维结构,导致淋巴清除减少和疗效延长。总的来说,我们的双重刺激响应可变形纳米颗粒为实现 RA 的增强治疗效果提供了一种智能解决方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验