Suppr超能文献

基于集成学习的预处理 MRI 放射组学模型,用于鉴别颅内脑室外室管膜瘤与多形性胶质母细胞瘤。

Ensemble learning-based pretreatment MRI radiomic model for distinguishing intracranial extraventricular ependymoma from glioblastoma multiforme.

机构信息

Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, China.

Department of Radiology, Xiangya Hospital, Central South University, Changsha, China.

出版信息

NMR Biomed. 2024 Dec;37(12):e5242. doi: 10.1002/nbm.5242. Epub 2024 Aug 20.

Abstract

This study aims to develop an ensemble learning (EL) method based on magnetic resonance (MR) radiomic features to preoperatively differentiate intracranial extraventricular ependymoma (IEE) from glioblastoma (GBM). This retrospective study enrolled patients with histopathologically confirmed IEE and GBM from June 2016 to June 2021. Radiomics features were extracted from T1-weighted imaging (T1WI) and T2-weighted imaging (T2WI) sequence images, and classification models were constructed using EL methods and logistic regression (LR). The efficiency of the models was assessed using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis. The combined EL model, based on clinical parameters and radiomic features from T1WI and T2WI images, demonstrated good discriminative ability, achieving an area under the receiver operating characteristics curve (AUC) of 0.96 (95% CI 0.94-0.98), a specificity of 0.84, an accuracy of 0.92, and a sensitivity of 0.95 in the training set, and an AUC of 0.89 (95% CI 0.83-0.94), a specificity of 0.83, an accuracy of 0.81, and a sensitivity of 0.74 in the validation set. The discriminative efficacy of the EL model was significantly higher than that of the LR model. Favorable calibration performance and clinical applicability for the EL model were observed. The EL model combining preoperative MR-based tumor radiomics and clinical data showed high accuracy and sensitivity in differentiating IEE from GBM preoperatively, which may potentially assist in clinical management of these brain tumors.

摘要

本研究旨在开发一种基于磁共振(MR)放射组学特征的集成学习(EL)方法,以术前区分颅内脑室外室管膜瘤(IEE)和胶质母细胞瘤(GBM)。这项回顾性研究纳入了 2016 年 6 月至 2021 年 6 月期间经组织病理学证实的 IEE 和 GBM 患者。从 T1 加权成像(T1WI)和 T2 加权成像(T2WI)序列图像中提取放射组学特征,并使用 EL 方法和逻辑回归(LR)构建分类模型。使用受试者工作特征(ROC)曲线、校准曲线和决策曲线分析评估模型的效率。基于 T1WI 和 T2WI 图像的临床参数和放射组学特征的组合 EL 模型表现出良好的鉴别能力,在训练集中获得了 0.96(95%CI 0.94-0.98)的 ROC 曲线下面积(AUC)、0.84 的特异性、0.92 的准确性和 0.95 的敏感性,在验证集中获得了 0.89(95%CI 0.83-0.94)的 AUC、0.83 的特异性、0.81 的准确性和 0.74 的敏感性。EL 模型的鉴别效果明显优于 LR 模型。观察到 EL 模型具有良好的校准性能和临床适用性。术前基于 MR 肿瘤放射组学和临床数据的 EL 模型在区分 IEE 和 GBM 方面具有较高的准确性和敏感性,可能有助于这些脑肿瘤的临床管理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验