Department of Radiology, The Affiliated Hospital of Southwest Medical University, No. 23 Tai Ping Street, Luzhou, 646000, Sichuan, China.
Eur Radiol. 2024 Aug;34(8):5349-5359. doi: 10.1007/s00330-023-10557-8. Epub 2024 Jan 11.
To develop and assess a radiomics-based prediction model for distinguishing T2/T3 staging of laryngeal and hypopharyngeal squamous cell carcinoma (LHSCC) METHODS: A total of 118 patients with pathologically proven LHSCC were enrolled in this retrospective study. We performed feature processing based on 851 radiomic features derived from contrast-enhanced CT images and established multiple radiomic models by combining three feature selection methods and seven machine learning classifiers. The area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity were used to assess the performance of the models. The radiomic signature obtained from the optimal model and statistically significant morphological image characteristics were incorporated into the predictive nomogram. The performance of the nomogram was assessed by calibration curve and decision curve analysis.
Using analysis of variance (ANOVA) feature selection and logistic regression (LR) classifier produced the best model. The AUCs of the training, validation, and test sets were 0.919, 0.857, and 0.817, respectively. A nomogram based on the model integrating the radiomic signature and a morphological imaging characteristic (suspicious thyroid cartilage invasion) exhibited C-indexes of 0.899 (95% confidence interval (CI) 0.843-0.955), fitting well in calibration curves (p > 0.05). Decision curve analysis further confirmed the clinical usefulness of the nomogram.
The nomogram based on the radiomics model derived from contrast-enhanced CT images had good diagnostic performance for distinguishing T2/T3 staging of LHSCC.
Accurate T2/T3 staging assessment of LHSCC aids in determining whether laryngectomy or laryngeal preservation therapy should be performed. The nomogram based on the radiomics model derived from contrast-enhanced CT images has the potential to predict the T2/T3 staging of LHSCC, which can provide a non-invasive and robust approach for guiding the optimization of clinical decision-making.
• Combining analysis of variance with logistic regression yielded the optimal radiomic model. • A nomogram based on the CT-radiomic signature has good performance for differentiating T2 from T3 staging of laryngeal and hypopharyngeal squamous cell carcinoma. • It provides a non-invasive and robust approach for guiding the optimization of clinical decision-making.
开发并评估一种基于放射组学的预测模型,用于区分喉和下咽鳞状细胞癌(LHSCC)的 T2/T3 分期。
本回顾性研究共纳入 118 例经病理证实的 LHSCC 患者。我们对来自增强 CT 图像的 851 个放射组学特征进行了特征处理,并通过结合三种特征选择方法和七种机器学习分类器建立了多个放射组学模型。使用受试者工作特征曲线(ROC)下面积(AUC)、准确性、敏感度和特异度来评估模型的性能。从最优模型中获取放射组学特征签名,并将统计学上显著的形态学图像特征纳入预测列线图。通过校准曲线和决策曲线分析评估列线图的性能。
使用方差分析(ANOVA)特征选择和逻辑回归(LR)分类器产生了最佳模型。训练集、验证集和测试集的 AUC 分别为 0.919、0.857 和 0.817。基于整合放射组学特征签名和形态学成像特征(可疑甲状软骨侵犯)的模型构建的列线图具有 0.899 的 C 指数(95%置信区间(CI)为 0.843-0.955),校准曲线拟合良好(p>0.05)。决策曲线分析进一步证实了该列线图的临床实用性。
基于增强 CT 图像放射组学模型构建的列线图对区分 LHSCC 的 T2/T3 分期具有良好的诊断性能。
准确评估 LHSCC 的 T2/T3 分期有助于确定是否应进行喉切除术或喉保留治疗。基于增强 CT 图像放射组学模型构建的列线图有可能预测 LHSCC 的 T2/T3 分期,为指导临床决策的优化提供了一种非侵入性且强大的方法。
• 采用方差分析与逻辑回归相结合的方法得出最优放射组学模型。
• 基于 CT-放射组学特征的列线图在区分喉和下咽鳞状细胞癌 T2 期和 T3 期方面具有良好的性能。
• 为指导临床决策的优化提供了一种非侵入性且强大的方法。