Suppr超能文献

用于在可见光激发下增强电催化活性和选择性的金@金钯核合金壳纳米颗粒

Au@AuPd Core-Alloyed Shell Nanoparticles for Enhanced Electrocatalytic Activity and Selectivity under Visible Light Excitation.

作者信息

da Silva Kaline N, Shetty Shwetha, Sullivan Allsop Sam, Cai Rongsheng, Wang Shiqi, Quiroz Jhon, Chundak Mykhailo, Dos Santos Hugo L S, Abdelsalam IbrahiM, Oropeza Freddy E, de la Peña O'Shea Víctor A, Heikkinen Niko, Sitta Elton, Alves Tiago V, Ritala Mikko, Huo Wenyi, Slater Thomas J A, Haigh Sarah J, Camargo Pedro H C

机构信息

Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, PO Box 55, FIN-0014 Helsinki, Finland.

Department of Materials, University of Manchester, Manchester M13 9PL, United Kingdom.

出版信息

ACS Nano. 2024 Sep 3;18(35):24391-24403. doi: 10.1021/acsnano.4c07076. Epub 2024 Aug 20.

Abstract

Plasmonic catalysis has been employed to enhance molecular transformations under visible light excitation, leveraging the localized surface plasmon resonance (LSPR) in plasmonic nanoparticles. While plasmonic catalysis has been employed for accelerating reaction rates, achieving control over the reaction selectivity has remained a challenge. In addition, the incorporation of catalytic components into traditional plasmonic-catalytic antenna-reactor nanoparticles often leads to a decrease in optical absorption. To address these issues, this study focuses on the synthesis of bimetallic core@shell Au@AuPd nanoparticles (NPs) with ultralow loadings of palladium (Pd) into gold (Au) NPs. The goal is to achieve NPs with an Au core and a dilute alloyed shell containing both Au and Pd, with a low Pd content of around 10 atom %. By employing the (photo)electrocatalytic nitrite reduction reaction (NORR) as a model transformation, experimental and theoretical analyses show that this design enables enhanced catalytic activity and selectivity under visible light illumination. We found that the optimized Pd distribution in the alloyed shell allowed for stronger interaction with key adsorbed species, leading to improved catalytic activity and selectivity, both under no illumination and under visible light excitation conditions. The findings provide valuable insights for the rational design of antenna-reactor plasmonic-catalytic NPs with controlled activities and selectivity under visible light irradiation, addressing critical challenges to enable sustainable molecular transformations.

摘要

等离子体催化已被用于在可见光激发下增强分子转化,利用等离子体纳米颗粒中的局域表面等离子体共振(LSPR)。虽然等离子体催化已被用于加速反应速率,但实现对反应选择性的控制仍然是一个挑战。此外,将催化成分掺入传统的等离子体催化天线 - 反应器纳米颗粒中通常会导致光吸收的降低。为了解决这些问题,本研究专注于合成双金属核壳结构的Au@AuPd纳米颗粒(NPs),其中钯(Pd)以超低负载量掺入金(Au)纳米颗粒中。目标是获得具有金核和包含金和钯的稀合金壳的纳米颗粒,钯含量低至约10原子%。通过采用(光)电催化亚硝酸盐还原反应(NORR)作为模型转化,实验和理论分析表明,这种设计能够在可见光照射下提高催化活性和选择性。我们发现合金壳中优化的钯分布允许与关键吸附物种有更强的相互作用,从而在无光照和可见光激发条件下均提高了催化活性和选择性。这些发现为合理设计在可见光照射下具有可控活性和选择性的天线 - 反应器等离子体催化纳米颗粒提供了有价值的见解,解决了实现可持续分子转化的关键挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f3b/11386439/cd25c70c209c/nn4c07076_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验