Departamento de Química Fundamental, Instituto de Química , Universidade de São Paulo , Avenido Prof. Lineu Prestes, 748 , 05508-000 São Paulo , SP , Brazil.
School of Materials , University of Manchester , Manchester M13 9PL , United Kingdom.
Nano Lett. 2018 Nov 14;18(11):7289-7297. doi: 10.1021/acs.nanolett.8b03499. Epub 2018 Oct 26.
The localized surface plasmon resonance (LSPR) excitation in plasmonic nanoparticles has been used to accelerate several catalytic transformations under visible-light irradiation. In order to fully harness the potential of plasmonic catalysis, multimetallic nanoparticles containing a plasmonic and a catalytic component, where LSPR-excited energetic charge carriers and the intrinsic catalytic active sites work synergistically, have raised increased attention. Despite several exciting studies observing rate enhancements, controlling reaction selectivity remains very challenging. Here, by employing multimetallic nanoparticles combining Au, Ag, and Pt in an Au@Ag@Pt core-shell and an Au@AgPt nanorattle architectures, we demonstrate that reaction selectivity of a sequential reaction can be controlled under visible light illumination. The control of the reaction selectivity in plasmonic catalysis was demonstrated for the hydrogenation of phenylacetylene as a model transformation. We have found that the localized interaction between the triple bond in phenylacetylene and the Pt nanoparticle surface enables selective hydrogenation of the triple bond (relative to the double bond in styrene) under visible light illumination. Atomistic calculations show that the enhanced selectivity toward the partial hydrogenation product is driven by distinct adsorption configurations and charge delocalization of the reactant and the reaction intermediate at the catalyst surface. We believe these results will contribute to the use of plasmonic catalysis to drive and control a wealth of selective molecular transformations under ecofriendly conditions and visible light illumination.
局部表面等离子体激元共振(LSPR)激发在等离子体纳米粒子中被用于在可见光照射下加速几种催化转化。为了充分利用等离子体催化的潜力,含有等离子体和催化组分的多金属纳米粒子引起了越来越多的关注,其中 LSPR 激发的高能电荷载流子和固有催化活性位点协同作用。尽管有几项令人兴奋的研究观察到了速率提高,但控制反应选择性仍然非常具有挑战性。在这里,通过采用 Au、Ag 和 Pt 组合的多金属纳米粒子,我们在 Au@Ag@Pt 核壳和 Au@AgPt 纳米笼结构中证明了在可见光照射下可以控制连续反应的反应选择性。通过苯乙炔的氢化作为模型转化,我们证明了等离子体催化中反应选择性的控制。我们发现,苯乙炔中的三键与 Pt 纳米粒子表面之间的局部相互作用使得在可见光照射下可以选择性地氢化三键(相对于苯乙烯中的双键)。原子计算表明,增强的部分氢化产物选择性是由反应物和反应中间体在催化剂表面上的独特吸附构型和电荷离域驱动的。我们相信这些结果将有助于利用等离子体催化在环保条件和可见光照射下驱动和控制丰富的选择性分子转化。