Halder Joy, Rajabov Akhmadjon, Bassoli Riccardo, Fitzek Frank H P, Fettweis Gerhard P
Vodafone Chair Mobile Communications Systems, Technische Universität Dresden, 01067, Dresden, Germany.
Deutsche Telekom Chair of Communication Networks, Technische Universität Dresden, 01067, Dresden, Germany.
Sci Rep. 2024 Aug 20;14(1):19262. doi: 10.1038/s41598-024-70114-1.
Quantum networks are designed to transmit quantum bits (qubits) among quantum devices to enable new network resources for the applications. Entanglement distribution and entanglement swapping are fundamental procedures that are required in several network operations. However, they are probabilistic operations, which can lead to severe network performance degradation. This article investigates the engineering problem of resource allocation in quantum networks, considering factors like entanglement distribution probability, quantum memory characteristics, and fidelity. We model this as an optimization model to obtain an optimal solution. In particular, we formulate an integer linear programming (ILP) and develop a heuristic algorithm, aiming to minimize the number of required entangled qubit pairs (Bell pairs or EPR pairs) in any adjacent pair in the quantum network. Extensive simulations are performed to compare the performance of proposed ILP and heuristic. In all the cases, the heuristic produces a comparable solution to the optimal one. Simulation results ensure that the value of maximum utilized Bell pairs in a quantum network highly depends on the value of the probability of entangled pairs established, considering the time in the quantum memory besides the number of incoming requests.
量子网络旨在在量子设备之间传输量子比特(qubit),以便为应用程序启用新的网络资源。纠缠分发和纠缠交换是多个网络操作中所需的基本过程。然而,它们是概率性操作,这可能导致严重的网络性能下降。本文研究量子网络中的资源分配工程问题,考虑诸如纠缠分发概率、量子内存特性和保真度等因素。我们将此建模为一个优化模型以获得最优解。具体而言,我们制定了一个整数线性规划(ILP)并开发了一种启发式算法,旨在最小化量子网络中任意相邻对所需的纠缠量子比特对(贝尔对或EPR对)的数量。进行了广泛的模拟以比较所提出的ILP和启发式算法的性能。在所有情况下,启发式算法产生的解决方案与最优方案相当。模拟结果表明,考虑到量子内存中的时间以及传入请求的数量,量子网络中最大利用贝尔对的值高度依赖于建立纠缠对的概率值。