Kimble H J
Norman Bridge Laboratory of Physics 12-33, California Institute of Technology, Pasadena, California 91125, USA.
Nature. 2008 Jun 19;453(7198):1023-30. doi: 10.1038/nature07127.
Quantum networks provide opportunities and challenges across a range of intellectual and technical frontiers, including quantum computation, communication and metrology. The realization of quantum networks composed of many nodes and channels requires new scientific capabilities for generating and characterizing quantum coherence and entanglement. Fundamental to this endeavour are quantum interconnects, which convert quantum states from one physical system to those of another in a reversible manner. Such quantum connectivity in networks can be achieved by the optical interactions of single photons and atoms, allowing the distribution of entanglement across the network and the teleportation of quantum states between nodes.
量子网络在一系列知识和技术前沿领域带来了机遇与挑战,包括量子计算、通信和计量学。实现由许多节点和信道组成的量子网络需要具备产生和表征量子相干性与纠缠的新科学能力。这项工作的基础是量子互连,它能以可逆方式将量子态从一个物理系统转换到另一个物理系统。网络中的这种量子连接性可通过单光子与原子的光学相互作用来实现,从而实现纠缠在网络中的分布以及节点间量子态的隐形传态。