Suppr超能文献

使用算法对线性亚苯基中的拓扑指数进行统计分析以预测物理化学性质。

Statistical analysis of topological indices in linear phenylenes for predicting physicochemical properties using algorithms.

作者信息

Huang Rongbing, Naeem Muhammad, Siddiqui Muhammad Kamran, Rauf Abdul, Rashid Muhammad Usman, Ali Mustafa Ahmed

机构信息

School of Computer Science, Chengdu University, Chengdu, China.

Department of Mathematics, School of Natural of Sciences, National University of Sciences and Technology, Islamabad, Pakistan.

出版信息

Sci Rep. 2024 Aug 20;14(1):19282. doi: 10.1038/s41598-024-70187-y.

Abstract

QSPR mathematically links physicochemical properties with the structure of a molecule. The physicochemical properties of chemical molecules can be predicted using topological indices. It is an effective method for eliminating costly and time-consuming laboratory tests. We established a QSPR between mev-degree and mve-degree-based indices and the physical properties of benzenoid hydrocarbons. To compute these indices, we designed a program using Maple software and the correlation between indices and physical properties was developed using the SPSS software. Our study reveals that the mve-degree-based sum-connectivity and atom bond connectivity ( ) index, mev-degree-based Randić ( ) and Zagreb ( ) index are the three most significant parameters and have good prediction ability for the physicochemical properties. We examined that predicts the molar refractivity and boiling point, predicts the LogP and enthalpy, predicts the molecular weight, predicts the Gibb's energy, Pie-electron energy and Henry's law. Moreover, we computed the indices for the linear [n]-phenylen.

摘要

定量构效关系(QSPR)在数学上把物理化学性质与分子结构联系起来。化学分子的物理化学性质可以用拓扑指数来预测。它是一种消除昂贵且耗时的实验室测试的有效方法。我们建立了基于中值度(mev-degree)和最小顶点度(mve-degree)的指数与苯型烃物理性质之间的定量构效关系。为了计算这些指数,我们使用Maple软件设计了一个程序,并使用SPSS软件建立了指数与物理性质之间的相关性。我们的研究表明,基于最小顶点度的和连接性及原子键连接性( )指数、基于中值度的兰迪奇( )和 Zagreb( )指数是三个最重要的参数,对物理化学性质具有良好的预测能力。我们研究发现, 预测摩尔折射率和沸点, 预测LogP和焓, 预测分子量, 预测吉布斯能量、π电子能量和亨利定律。此外,我们计算了线性[n] - 亚苯基的指数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e7a/11336112/78ecd65dd781/41598_2024_70187_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验