Suppr超能文献

基于人工智能的语言模型在职业健康中的应用批判性评估

Critical evaluation of applications of artificial intelligence based linguistic models in Occupational Health.

作者信息

Dos Santos Mateus Lins, Victória Vera Nascimento Gomes

机构信息

6ª Vara, Justiça Federal em Sergipe, Itabaiana, SE, Brazil.

9ª Vara, Justiça Federal em Sergipe, Propriá, SE, Brazil.

出版信息

Rev Bras Med Trab. 2024 Aug 5;22(1):e20231241. doi: 10.47626/1679-4435-2023-1241. eCollection 2024 Jan-Mar.

Abstract

This article explores the impact and potential applications of large language models in Occupational Medicine. Large language models have the ability to provide support for medical decision-making, patient screening, summarization and creation of technical, scientific, and legal documents, training and education for doctors and occupational health teams, as well as patient education, potentially leading to lower costs, reduced time expenditure, and a lower incidence of human errors. Despite promising results and a wide range of applications, large language models also have significant limitations in terms of their accuracy, the risk of generating false information, and incorrect recommendations. Various ethical aspects that have not been well elucidated by the medical and academic communities should also be considered, and the lack of regulation by government entities can create areas of legal uncertainty regarding their use in Occupational Medicine and in the legal environment. Significant future improvements can be expected in these models in the coming years, and further studies on the applications of large language models in Occupational Medicine should be encouraged.

摘要

本文探讨了大语言模型在职业医学中的影响和潜在应用。大语言模型有能力为医疗决策、患者筛查、技术、科学和法律文件的总结与创作、医生和职业健康团队的培训与教育以及患者教育提供支持,这可能带来成本降低、时间支出减少和人为错误发生率降低的结果。尽管取得了令人鼓舞的成果且应用广泛,但大语言模型在准确性、生成虚假信息的风险和错误推荐方面也存在重大局限性。医学和学术界尚未充分阐明的各种伦理问题也应予以考虑,而且政府实体缺乏监管可能会在职业医学和法律环境中使用大语言模型方面造成法律不确定性领域。预计未来几年这些模型会有显著改进,应鼓励对大语言模型在职业医学中的应用进行进一步研究。

相似文献

2
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

本文引用的文献

3
ChatGPT: Friend or Foe?-Utility in Trauma Triage.ChatGPT:朋友还是敌人?——在创伤分诊中的效用
Indian J Crit Care Med. 2023 Aug;27(8):563-566. doi: 10.5005/jp-journals-10071-24498.
10
Improving Patient-Provider Relationships to Improve Health Care.改善医患关系以改善医疗保健。
Clin Gastroenterol Hepatol. 2020 Jun;18(7):1417-1426. doi: 10.1016/j.cgh.2019.12.007. Epub 2019 Dec 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验