Ren Zhong, Yang Xiaojing
Struct Dyn. 2024 Aug 19;11(4):041302. doi: 10.1063/4.0000261. eCollection 2024 Jul.
Heterogeneity is intrinsic to the dynamic process of a chemical reaction. As reactants are converted to products via intermediates, the nature and extent of heterogeneity vary temporally throughout the duration of the reaction and spatially across the molecular ensemble. The goal of many biophysical techniques, including crystallography and spectroscopy, is to establish a reaction trajectory that follows an experimentally provoked dynamic process. It is essential to properly analyze and resolve heterogeneity inevitably embedded in experimental datasets. We have developed a deconvolution technique based on singular value decomposition (SVD), which we have rigorously practiced in diverse research projects. In this review, we recapitulate the motivation and challenges in addressing the heterogeneity problem and lay out the mathematical foundation of our methodology that enables isolation of chemically sensible structural signals. We also present a few case studies to demonstrate the concept and outcome of the SVD-based deconvolution. Finally, we highlight a few recent studies with mechanistic insights made possible by heterogeneity deconvolution.
异质性是化学反应动态过程的固有特性。随着反应物通过中间体转化为产物,异质性的性质和程度在反应持续时间内随时间变化,并且在整个分子集合中随空间变化。包括晶体学和光谱学在内的许多生物物理技术的目标是建立一条遵循实验引发的动态过程的反应轨迹。正确分析和解决不可避免地嵌入实验数据集中的异质性至关重要。我们开发了一种基于奇异值分解(SVD)的去卷积技术,并已在各种研究项目中严格实践。在这篇综述中,我们概述了处理异质性问题的动机和挑战,并阐述了我们方法的数学基础,该方法能够分离出化学上有意义的结构信号。我们还展示了一些案例研究,以说明基于SVD的去卷积的概念和结果。最后,我们重点介绍了一些最近的研究,这些研究通过异质性去卷积获得了机理上的见解。